高一数学教学工作计划模板汇编7篇
时间过得可真快,从来都不等人,很快就要开展新的工作了,现在就让我们制定一份计划,好好地规划一下吧。那么计划怎么拟定才能发挥它最大的作用呢?下面是小编帮大家整理的高一数学教学工作计划7篇,欢迎大家分享。
高一数学教学工作计划 篇1
一、高考要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的`反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.
三、课前训练
1.函数的定义域是 ( D )
(A) (B) (C) (D)
2.函数的反函数为 ( B )
(A) (B)
(C) (D)
3.设则 .
4.设,函数是增函数,则不等式的解集为 (2,3)
四、典型例题
例1 设,则的定义域为 ( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故选B
例2 已知是上的减函数,那么a的取值范围是 ( )
(A) (B) (C) (D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3 函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
高一数学教学工作计划 篇2
教学计划可以帮助教师理清教学思路,提高课堂效率。
●教学目标
(一)教学知识点
1.了解全集的意义.
2.理解补集的概念.
(二)能力训练要求
1.通过概念教学,提高学生逻辑思维能力.
2.通过教学,提高学生分析、解决问题能力.
(三)德育渗透目标 渗透相对的观点.
●教学重点 补集的概念.
●教学难点
补集的有关运算.
●教学方法 发现式教学法 通过引入实例,进而对实例的`分析,发现寻找其一般结果,归纳其普遍规律.
●教具准备
第一张:(记作1.2.2 A)
●教学过程 Ⅰ.复习回顾
1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?
Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.
请同学们由下面的例子回答问题: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分
由此借助上图总结规律如下: 投影片:(1.2.2 B)
Ⅳ.课时小结
1.能熟练求解一个给定集合的补集.
2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业
高一数学教学工作计划 篇3
一、 指导思想
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展和社会进步的需要。具体目标如下:
1.突出数学基础知识、基本技能、基本思想方法的培养
对数学基础知识和基本技能的培养,要贴近教学实际,既注意全面,又突出重点,注重知识内在联系以及中学数学中所蕴涵的数学思想方法的培养。
2.重视数学基本能力的培养
数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力。根据高一上学期的内容,侧重以下几个方面:
(1)运算求解能力是思维能力和运算技能的结合,主要包括数的计算、估算和近似计算,式子的组合变形与分解变形,以及能够针对问题探究运算方向、选择运算公式、确定运算程序等。
(2)抽象概括能力的培养要求是:能够通过对实例的探究发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或做出新的判断。
(3)推理论证能力的培养要求是:能够根据已知的事实和已经获得的'正确的数学命题,运用演绎推理,论证某一数学命题的真假性。
(4)数据处理能力是指会收集、整理、分析数据,能够从大量数据中提取对研究问题有用的信息并做出判断,以解决给定的实际问题。
3.注重数学的应用意识和创新意识的培养
培养数学的应用意识,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决。培养学生的创新意识,鼓励学生创造性地解决问题。
4.提高学生学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。逐步认识数学的科学价值、应用价值和文化价值,崇尚数学的理性精神,体会数学的美学意义,形成批判性的思维习惯,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、 教材特点
高一上使用的是人教版《必修1》和《必修4》,这套教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现了基础性、时代性、典型性和可接受性等,具有如下特点:
1. 亲和力:以生动活泼的呈现方式,激发学习兴趣和美感,每章配有优美的章头图和诗一般的引言和富有哲理的数学家名言。
2. 问题性:每节围绕问题展开,设置问题情景,培养问题意识,以问题为切入点,形成问题链,来组织课堂教学
3. 思想性和应用性:通过不同数学内容的联系和启发,强调类比、推广、化归和特殊化等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培养理性精神;取材具有时代感、现实感,加强数学活动,发展应用意识。
4. 可操作性:教材编写体例就是以一堂课的全过程展开,易于学生自学、教师编写教案,大致一节内容占三页。
三、 学情分析
基本状况:本年级共14个行政班级,其中2个实验班,12个普通班。学生数共840人,由于初高中分别进行了课改,高中教材与初中教材衔接度远远不够,需在新授的同时适时补充一些内容,因此时间上略紧。同时,因其底子薄弱,教学时必须注重基础,夯实每个知识点。
四、 教学措施
1.加强自我学习,特别是两个纲领性文件——《普通高中数学课程标准》,《普通高中数学考试大纲》,准确把握教学要求,提高教学效率,不做无用功;
2.加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;平行班级统一进度,统一要求,统一作业,统一考试;
3.认真贯彻教学六认真的要求,精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;
4.加强衔接教学,适量打破模块式教学,使学生得到和谐的发展。
五、 教学进度
高一数学教学工作计划 篇4
一 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的`联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 教学目标分析:
知识与技能:
1.结合方程根的几何意义,理解函数零点的定义;
2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3.使学生感受学习、探索发现的乐趣与成功感
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 教学准备
导学案,自主探究,合作学习,电子交互白板。
五 教学过程设计:
(一)、问题引人:
请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?
(1)
;(2)
?
学生活动:回答,思考解法。
教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?
学生活动:思考作答。
设计意图:通过设疑,让学生对高次方程的根产生好奇。
(二)、概念形成:
预习展示1:
你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。用投影展示学生填写表格
一元二次方程 | 方程的根 | 二次函数 | 函数的图象 (简图) | 图象与轴交点的坐标 | 函数的零点 |
? | ? | ? | ? | ||
? | ? | ? | ? | ||
? | ? | ? | ? |
问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与
轴交点的坐标以及函数零点的关系吗?
学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。
教师活动:我们就把使方程 成立的实数x称做函数的零点.(引出零点的概念)
根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?
学生活动:经过观察表格,得出(请学生总结)
1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,3
2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.
3)方程有实数根函数的图象与轴有交点函数有零点。
教师活动:引导学生仔细体会上述结论。
再提出问题:如何并根据函数零点的意义求零点?
学生活动:可以解方程而得到(代数法);
可以利用函数的图象找出零点.(几何法).
设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。
(三)、探究性质:
(五)、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
(六)、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间
(七)、巩固练习(略)
高一数学教学工作计划 篇5
一、学情分析
这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。
二、教学目标
1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。
2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。
3. 进一步培养学生的空间想象能力与确定性思维能力。
三、教学重点:在空间直角坐标系中点的坐标的确定。
四、教学难点:通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置
五、教学过程
(一)、问题情景
1. 确定一个点在一条直线上的位置的方法。
2. 确定一个点在一个平面内的位置的方法。
3. 如何确定一个点在三维空间内的位置?
例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?
在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。
(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)
教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。
这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置。
(二)、建立模型
1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的'定义。
从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面,yOz平面,zOx平面。
教师进一步明确:
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。
(2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。
2. 空间直角坐标系O-xyz中点的坐标。
思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z)。
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z)。
教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。
(三)、例 题 与 练 习
1. 课本135页例1.
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。
2. 课本135页例2
探究: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知长方体ABCD-ABCD的边长AB=12,AD=8,AA=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
注意:此题可以由学生口答,教师点评。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同。
[练 习]
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:长方体ABCD-ABCD的边长AB=12,AD=8,AA=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件。
(四)、拓展延伸
分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。
六、评价设计
1、 练习 : 课本P136. 1、2、3
2、 课堂作业: 课本P138. 1、2
高一数学教学工作计划 篇6
本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的'兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
高一数学教学工作计划 篇7
教材教法分析
本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的'关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程
③感受类比思想在探究新知识过程中的作用
2、过程与方法
①结合具体问题引入,诱导学生探究
②类比学习,循序渐进
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
教学难点
“通过建立恰当的空间直角坐标系,确定空间点的坐标”。
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
【高一数学教学工作计划】相关文章:
高一数学教学工作计划06-09
高一数学教学总结范本06-26
高一数学教学工作计划7篇08-20
高一数学教学工作计划(精选10篇)10-17
高一数学教学工作计划(15篇)08-19
高一数学教学总结3篇07-04
高一数学教学总结14篇10-19
高一数学教学工作计划(通用11篇)10-27
高一数学教学工作计划(通用18篇)04-10
有关高一数学教学工作计划3篇07-13