实用的高三数学教学工作计划4篇
光阴的迅速,一眨眼就过去了,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻需要制定一个详细的计划了。好的计划是什么样的呢?以下是小编为大家整理的高三数学教学工作计划4篇,仅供参考,欢迎大家阅读。
高三数学教学工作计划 篇1
教师的教学指导对学生的学习有着至关重要的作用,所以作为一名教师需要做好一定的教学计划。下面是高三数学教学计划进度表,供广大的教师参考使用。希望各位高三数学教师能够培养出多个高端人才,进入自己理想中的大学。
一、指导思想
研究教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
二、教学设想
㈠总的原则
1、整合三月,抢拼四月,冲刺五月
我们把整个高三分成三个阶段,三月到四月中旬为第二个阶段整合阶段,将第一轮未完成的内容一扫光,适当讲一点专题,应对考试各种题型的训练。四月中旬到五月中旬,大面积进入专题训练,五月中旬后,就逐渐把精力放到主干知识上,不再大量练习新的题型,而是复习错题集,使自己在高考中尽量减少错误,甚至不犯错误。力争以较好状态迎接高考
2、认真研读数学考试大纲及四川卷考试说明,做到宏观把握,微观掌握,注意高考热点,特别注意高考的信息。认真钻研成都四、七、九中的考题,最近几年这三个学校的一诊二诊三诊题都与高考很接近,特别是三诊以后有一套练习题很有针对性。
3、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。
3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
㈡。体现数学学科特点,注重知识能力的提高,提升综合解题能力
1、加强解题教学,使学生在解题探究中提高能力。
2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。 不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
多从贴近教材、贴近学生、贴近实际角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。
㈢合理安排复习中讲、练、评、辅的时间
1、精心设计教学,做到精讲精练,不加重学生的负担,避免题海战
2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果;
3、注重实效,努力提高复习教学的效率和效益;
㈣改变传统复习模式,体现小组交流合作;
1、淡化各自为战,加强备课小组交流合作,资源共享;
2、坚持学生主题,教师主导;
3。注重学法指导及心理辅导;
(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。
(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。
(3)加强边缘生的个别辅导。
A类边缘生采用各个击破,B类边缘生抓基础,促能力,A类边缘生注意个别指导;B类边缘生手把手的教,主要课堂重点关注,课后重点辅导。
三、教学重点
1、数学思想方法
2、教材的重点、高考的热点
3、依据新大纲、夯实基础,突出内容,课程内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。
4、注意以单元块的纵向复习为主到综合性横向发展为主。 从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。
注意知识的交叉点和结合点。
四、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持先备课后上课,加强学习,多听课,探索第二轮复习的教学模式。
3、脚踏实地抓落实 搞好促优补差工作
(1)当日内容,当日消化,加强每天必要的练习检查督促。
(2)坚持每周一次小题训练,每周一次综合训练。
(3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。对每一次考试试题研究,努力提高考试的效率。
① 注意研究高考考试说明,近三年高考试题,特别是全国卷的高考试题。
②在综合练习中,不缩小考试难度,既注意重点知识的考查,注重对数学思想和方法的考查。
③在综合练习中注意实践能力的考查,要求学生能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明。
④在综合练习中注意创新意识的考查:要求学生能对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。
4、加强应试心理的指导,为学生减压,开启他们心灵之窗,使他们保持最佳状态。
5、高考数学试卷上的题与我们平日练习的题目不一样,怎么办?复习时应注意什么?
(1)力求作到三个避免
避免需要死记硬背的内容; 避免呆板的试题;避免繁琐的计算。
(2)用学过的知识解决没有见过的问题。利用已有的知识内容、思想方法和基本能力,自己去研究试题所提供的新素材,分析试题所创设的新情况,找出已知和未知间的'联系,重新组织若干已有的规则,形成新的高级规则,尝试解决试题所确立的新问题。
6、对重点知识与重点方法要真正理解,并且理解准、透。如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;全面准确把握好所用概念的前提条件;熟练掌握表示有关概念的字符、记号。
7、加强学法指导 在教学中要让学生明白:
第一轮复习,通常称为方法篇。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用配方法、待定系数法、换元法、数形结合、分类讨论等方法解决一类问题、一系列问题。同学们应做到:
①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。
②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。
③从现在开始,解题一定要非常规范,俗语说:不怕难题不得分,就怕每题都扣分,所以大家务必将解题过程写得层次分明,结构完整。
④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
第二轮复习,大约一个月的时间,也称为策略篇。老师主要讲述选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:
①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对减缩思维的要求。
②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。
③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
最后,就是冲刺阶段,也称为备考篇。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:
①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。
②抓思维易错点,注重典型题型。
③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好再纠错工作。
④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。
⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。
高三数学教学工作计划 篇2
(一) 创设情景,引入新课
(借助多媒体)给出一张王小丫的图片(学生情绪高涨),大家都知道王小丫是cctv-2“开心词典”的栏目主持人,下面王小丫给大家出题啦!
观察下列各数列,并填空,然后总结它们有什么共同的特点?具有什么性质?你能给它们起个名字吗?
①1,2,3,4,5,6,7,8, ,…
②3,6,9,12,15, ,21,24,…
③-1,-3,-5,-7,-9,-11, ,-15,…
④2,2,2,2,2,2, ,2,2,…
设计思路:1.通过几个具体的等差数列,为学习新知识创设问题情境,激发学生的求知欲。2.由学生观察数列特点,初步认识等差数列的特征,为后面引出等差数列的概念学习建立基础。3.学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。4.对问题的总结可以培养学生由具体到抽象、由特殊到一般的认知能力。5.按照“观察--猜想--证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。
(二) 启发诱导、探求新知
1、由学生的总结自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
思考并交流对概念的.理解,并总结:
①“从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式: (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1). 9 ,8,7,6,5,4,……;√ d=-1
2). 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3). 0,0,0,0,0,0,…….; √ d=0
4). 1,2,3,2,3,4,……;×
5). 1,0,1,0,1,……×
其中第一个数列公差d<0 d="">0,第三个数列公差d=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是,公差是d,则据其定义可得:
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
(2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:
a2-a1=d
a3=a2+d
……
an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈N﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。
(三)巩固新知应用例解
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。
例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。
(四)反馈练习
1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、课后习题第3题和第4题。
目的:对学生加强建模思想训练。
(五)归纳小结、深化目标
1.等差数列的概念及数学表达式an-an-1=d (n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2.等差数列的通项公式会知三求一。
3.用“数学建模”思想方法解决实际问题。
(六)布置作业
必做题:课本习题第2,6 题
选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
高三数学教学工作计划 篇3
二轮复习承上启下,是促进知识系统化、条理化及灵活运用的关键时期,更是促进学生能力发展的关键时期,二轮复习的质量如何直接关系到高考的成败。为了提高二轮复习的效果,现结合高三数学现状及学生的实际,制定二轮复习计划如下:
一、指导思想
巩固第一轮复习成果,完善强化知识体系,增强题目的综合性,提高思维能力、概括能力以及分析问题解决问题的能力。概括讲就是巩固、完善、综合、提高。
二、复习安排
根据本学期的复习任务,将本学期的备考工作划分为以下四个阶段:
第一阶段(专题复习):从20xx年2月17日~20xx年4月27日完成以主干知识为主的专题复习;
第二阶段(综合演练):从20xx年4月28日~20xx年5月18日完成以训练能力为主的综合训练;
第三阶段(自由复习):从20xx年5月-----日~20xx年5月----日完成以自我完善为主的自主复习;
第四阶段(强化训练):从20xx年5月-----日~20xx年6月03日。
三、备考策略
第一阶段(专题复习)备考策略(从20xx年2月17日~20xx年4月27日)
(一)目标与任务:
强化高中数学主干知识的复习,形成良好的知识网络。强化考点,突出重点,归纳题型,培养能力。
根据高考试卷中解答题的设置规律,本阶段的复习任务主要包括以下七个知识专题:
专题一:集合、函数、导数与不等式。此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
专题二:数列、推理与证明。数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。
专题三:三角函数、平面向量和解三角形。平面向量和三角函数的图像与性质、恒等变换是重点。近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。平面向量具有几何与代数形式的双重性,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。
专题四:立体几何。注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。
专题五:解析几何。直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。近几年高考中圆锥曲线问题具有两大特色:一是融综合性、开放性、探索性为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。
专题六:概率与统计、算法与复数。要求学生具有较高的阅读理解和分析问题、解决问题的能力。
高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。
专题七:系列4选讲。包括几何、极坐标与参数方程、不等式选讲
(二)方法与措施:
1、工作要求
专题教案的编写要求:把专题内容包含的考点或题型划分为若干课时,本专题内容的考情简析,专题知识要点融合,近五年真题回放,选题要以常规题型为主,注重知识之间的交叉、渗透和综合,严格控制解答题难度,中低档题的比例应占到80%左右,要有利于中等学生水平的提升;所选例题及作业题要提供详解答案。
2.强化集体学习。认真研读《考试大纲》,研究学习20xx年数学学科《考试说明》,认真研究各地模拟卷,准确掌握各章内容的高考要求,以便在教学中把握方向;组内每位教师要把近3年的新课程高考试卷重做一遍,仔细剖析每类题的题型特点,考查重点、考查方向、命题规律,弄清试题的变化分布规律,分析总结出共同的特征,收集整理出有用的高考信息,提高自身业务能力和复习的针对性;
3.备好两课(即复习课、评讲课)精讲精评。
(1)复习课力求做到:①系统性:知识前后衔接,梳理归纳成串;②综合性:纵横联系,知识交叉,多角度、多层次;③基础性:着眼双基,中档为主,面向多数;④重点性:突出主干知识,详略得当;
(2)评讲课应该做到:①针对性:讲其所需,释其所疑,解其多难;②诊断性:诊痛析因,指点迷津,传授方法,诊防结合;③辐射性:以点带面,画龙点睛,举一反三;④启发性:启发思维,点拨思路,发散开拓。
4.落实好教学常规,抓好教学过程的各个环节。从集体备课到课堂教学,到作业的批改和辅导,环环相扣,丝毫不能松懈。课堂教学中要注重学生的活动,学生自己能解决的就让学生自己解决;做好自习课的辅导,耐心解答学生存在的疑难问题,及时批改学生的作业,一定要抓好学生规范表述及计算能力。
5.切实抓好强化训练,注重知识的巩固和滚动
每章一次综合测试;每月一次月考;对每次训练要做到批改、讲评及时、到位,科学统计,及时总结,发现问题,查漏补缺,及时反馈。并同时要求学生去反思错解原因,以达到巩固知识,提高能力的目的,力争做到让学生练有所得,听有所获。
以上不同层次的训练首先要做到精选试题,立足于中、低档题目,不能盲目拔高,追求一次?到位,去建造空中楼阁。都要求学生限时完成,认真作答。一是强化学科能力训练,有意识地提高学生综合运用知识分析、解决实际问题的能力,提高学生的思维能力;二是培养学生规范、完整、准确地答题习惯 。
6.处理好模拟考试和专题复习的`关系
除了正常的考后试卷分析,我们对每次考试、练习都要分析学生知识点的得分情况,分析各次考试学生的得分点是否有变化、有提高,并采取相应措施。把能够得分的题型通过考后练习、讲评要让学生一一突破要有目的解决学生中存在的一些突出问题。
7.注重心理训练。学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的法宝。在测试或训练题中要在适当的位置设置障碍或有意识的引入新情景、新信息问题,有意识的锻炼学生心理素质,增强学生的应变能力和知识迁移能力,提高学生应试技巧。但要把握好度,不能过于挫伤学生的自信心和积极性;
8.服从整体,做好培优及目标生的补差工作。强化对目标生的督促、检查,全面落实年级的要求,狠抓落实,尽可能对他们的作业或练习做到面批面改,帮助他们查找问题,指出努力的方向和目标,激励学生学习的士气。
此阶段的备课要特别注意研究各地的模拟试题,细心揣摩,进一步加强对重点内容,学科思想,学科方法的研究,密切关注知识的交叉点和结合点,关注新课程的新重点,牢牢把握好复习的方向;此阶段还要解决好热点问题-开放型问题、探索性问题、存在性问题等。
第二阶段(综合演练)备考策略(从20xx年4月28日~20xx年5月18日)
(一)目标与任务:模拟训练,强调规范,查找问题,完善提高;
(二)方法与措施:根据各地的高考信息编拟模拟试卷,通过规范训练,训练考试技巧和学生的应试心理,发现平时复习的薄弱点和思维的易错点,提高实战能力,走近高考。
该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的生成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。
通过应试技能的训练,在考试中要求学生注意如下几点:
1.容易题争取不丢分规范表述少跳步
2.中等题争取少丢分得分点处写清楚
3.较难题争取多拿分知道一点写一点
4.克服会而不对,对而不全的问题
第三阶段(自由复习)备考策略(从20xx年5月XX日~20xx年5月XX日)
(一)目标与任务:自由复习,自主整理,要求学生回归课本,回归基础,收拢、巩固已有知识,同时进行适度训练做好心理的调试,逐步达到最佳状态。
(二)方法与措施:制定出自由复习的指导建议和考前指导。学生参考教师建议,自主复习,主动做到:
1.检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练。
2.抓思维易错点,注重典型题型及解题方法。
3.浏览自己以前做过的习题、试卷、改错本,回忆自己学习相关知识的历程,做好再纠错工作。
4.不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。
第四阶段(强化训练)
四、复习进度表
第一阶段专题复习
专题内容课时
专题一集合与常用逻辑用语、复数与算法4
专题二不等式、函数与导数12
专题三三角函数、解三角形、平面向量10
专题四数列、推理与证明10
专题五立体几何7
专题六解析几何10
专题七概率与统计7
专题八选修系列10
高三数学教学工作计划 篇4
一、内容和内容解析
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析
(一)教学目标
1.理解不等式的概念
2.理解不等式的解与解集的意义,理解它们的区别与联系
3.了解解不等式的概念
4.用数轴来表示简单不等式的解集
(二)目标解析
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计
(一)动画演示情景激趣
多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果.
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
.从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.
(三)紧扣问题概念辨析
3.不等式的解集
设问1:什么是不等式的解集?
设问2:不等式的解集与不等式的解有什么区别与联系?
由学生自学后再小组合作交流.
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的'一个集合.
4.解不等式
设问1:什么是解不等式?
由学生回答.
老师强调:解不等式是一个过程.
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.
(四)数形结合,深化认识
问题1:由上可知,x>75既是不等式的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?
问题2:如果在数轴上表示 x≤ 75,又如何表示呢?
由老师讲解,注意规范性,准确性.
老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.
(五)归纳小结,反思提高
教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.
(六)布置作业,课外反馈
教科书第119页第1题,第120页第2,3题.
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
【高三数学教学工作计划】相关文章:
高三数学教学工作计划10-06
高三数学教学的总结05-22
高三数学的教学总结08-29
高三数学教学计划05-31
高三数学教学总结范文10-01
高三数学的教学总结范文10-27
高三数学教学工作计划14篇10-07
高三数学教学工作计划精选22篇08-09
高三数学教学工作计划(精选14篇)06-09
【精选】高三数学教学工作计划四篇07-07