教学计划

高三数学教学工作计划

时间:2024-07-23 23:59:31 教学计划 我要投稿

【精品】高三数学教学工作计划4篇

  日子如同白驹过隙,不经意间,很快就要开展新的工作了,是时候开始写计划了。好的计划都具备一些什么特点呢?以下是小编帮大家整理的高三数学教学工作计划4篇,欢迎阅读,希望大家能够喜欢。

【精品】高三数学教学工作计划4篇

高三数学教学工作计划 篇1

  外因可起重要作用,但它必须通过内因才能起作用。

  只有学生主动起来,对每一堂课都有一种需求的心态走进来,才有可能真正取得提高,那么如何引导学生在复习中不只是跟在后面,而是走到前面呢?我的对策是在调动学生学习积极性提高他们的学习兴趣的同时,帮助他们养成在课前几分钟自觉地对本堂课的要点进行梳理的习惯,或者把本堂课的要点梳理设计成练习,课前发给他们,或者利用多媒体投影仪展示,让他们去回顾、思考,可以说课前对基础知识的梳理与强化是学习的生命。

  一些基础相对较好或思维较快但比较粗糙的同学,往往眼高手低,喜欢看看题目,稍微动动笔,答案一写了事。

  尤其我们(9)班学生多数有这个毛病。

  加强分析思考,这本身是件好事,但过了头,就成了坏事。

  平时解题只是写个简单答案,不注意解题步骤和过程的规范,导致的结果就是一些细节地方考虑不周全,考试中扣分过多,甚至碰到很熟悉的题目,考试中没了思路。

  所以我们的对策是同学们平时的练习和作业中必须要有完整的书写步骤,提高表达水平。

  高考中,只有把你的思维通过解答完整反映到卷面上,阅卷老师才有给满分的可能。

  只埋头拉车,不抬头看路。

  高考复习资料五花八门,这些同学在复习中埋头苦练,拼命做题,往往是事倍功半。

  我们觉得在复习中应边练边想,必要的训练是必不可少的,不要搞题海战术,而要强化自我总结,教学工作计划《高三数学教学与复习计划-》。

  学习数学离不开做题,但要精,并在做题后要认真反思、分析,总结出一些问题的规律,并找出自己存在的问题,真正掌握解题的思维方式,内化为自己的能力。

  努力争取达到做一题,得一法,会一类,通一片的收获。

  抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。

  提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

  研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。

  结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

  1、高考平均分力求达90分;2、解决优生的数学“缺腿”问题;3、培养尖子生突破“120分”. 根据以上分析我提出第一轮教学和复习建议: (一)同备课组老师之间加强研究 1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

  2、研究高中数学教材。

  处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

  3、研究08年新课程地区高考试题,把握考试趋势。

  特别是山东卷、全国卷、上海卷以及广东、江苏、海南、宁夏等课改地区的试卷。

  4、研究高考信息,关注考试动向。

  及时了解09高考动态,适时调整复习方案。

  5、研究本校数学教学情况、尤其是本届高三学生的学情。

  有的放矢地制订切实可行的校本复习教学计划。

  (二)重视课本,夯实基础,建立良好知识结构和认知结构体系 课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

  只有吃透课本上的例题、习题,才能全面、系统地掌握基础知、基本技能和基本方法,构建数学的知识网络,以不变应万变。

  在求活、求新、求变的命题的指导思想下,高考数学试题虽然不可能考查单纯背诵、记忆的内容,也不会考查课本上的原题,但对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化,高考试题千变万化,异彩纷呈,但无论怎样变化、创新,都是基本数学问题的组合。

  所以,对基本数学问题的认识,基本数学问题解法模式的研究,基本问题所涉及的数学知识、技能、思想方法的理解,乃是数学复习课的重心。

  多年的教学实践,使我们深刻体会到:基础题、中档题不需要题海,高档题题海也是不能解决的。

  在第一轮复习中,切忌“高起点、高强度、高要求”,所谓“居高临下”,往往投入很大,收效甚微,甚至使学生丧失学习数学的兴趣和信心。

  要引导学生重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。

  最基础的知识是最有用的知识,最基本的方法是最有用的方法。

  在复习过程中自觉地将新知识及时纳入已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。

  (三)提升能力,适度创新 考查能力是高考的重点和永恒主题。

  教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

  新大纲提出能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识,包括提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学实践能力、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式做出思考和判断。

  其中理性思维能力是数学能力的核心,而分析问题和解决问题的能力(实践能力)是数学的一种综合能力,需将思维、运算、空间想象有机结合去完成的一种复合型能力,是思维能力的更高层次。

  逻辑思维能力在解题中表现为:①领会题意、明确目标;②寻找解题方向和有效解题步骤;③正确推理和运算,表述解题过程。

  能力的`培养首先应重视知识与技能的学习、思想方法的渗透。

  知识与技能的掌握有助于能力的提高,思想方法的掌握有助于广泛迁移的实现。

  实践能力在考试中表现为解答应用问题。

  创新是指在新的问题情境中,综合灵活地应用所学知识、思想和方法,进行独立思考、探索和研究,选择有效的方法和手段分析和处理信息,提出解决问题的思路,创造性地解决问题。

  创新意识是理性思维高层次表现,对数学问题的“观察、猜测、抽象、概括、证明,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融汇的程度越高,显示出的创新意识也就越强。

  (四)强化数学思想方法 数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。

  注重对数学思想方法的考查也是高考数学命题的显著特点之一。

  数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活。

  数学思想方法是数学的精髓,是适用于数学全部内容的通法,对于数学思想和方法的考查必然要与数学知识考查结合进行。

  只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力。

  因此,在各个阶段的复习中,要结合具体问题不失时机地运用、渗透数学思想方法,对其进行多次再现、不断深化,逐步内化为自己能力的组成部分,实现“知识型”向“能力型”的转化。

  常用的数学思想方法可分为三类:一是具体操作方法,如配方法、消元法、换元法、迭代法、裂项相消法、错位相减法、特值法、待定系数法、同一法等;二是逻辑推理方法,如综合法、分析法、反证法、类比法、探索法、解析法、归纳法等;三是具有宏观指导意义的数学思想方法,如函数与方程的思想方法、数形结合的思想方法、分类与整合的思想方法、化归与转化的思想方法等。

  在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

  (五)强化思维过程,提高解题质量 数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题。

高三数学教学工作计划 篇2

  一、学生基本情况:

  175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  二、高考要求

 1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,XX年文科试题应用有3道题,共28分。

  5、注重学生创新意识的'考查,注重学生创造能力的考查。

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习→典型例题→作业→课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。

  四、教学进度详细安排:

  1、函数(共11课时)(8月9日结束)

  (1)函数的单调性(2课时)

  (2)函数的图象(2课时)

  (3)二次函数(2课时)

  (4)函数的奇偶性(1课时)

  (5)函数章考(4课时)

  2、三角函数(共30课时)(9月15日结束)

  (1)任意角的三角函数(1)

  (2)同角三角函数的基本关系(1)

  (3)诱导公式(1)

  (4)三角函数的图象(2)

  (5)三角函数的定义域、值域和最值(2)

  (6)三角函数的奇偶性、单调性(1)

  (7)三角函数的周期性(1)

  (8)两角和差的正、余弦公式(1)

  (9)倍角公式、万能公式(2)

  (10)和积互化公式(1)

  (11)三角函数的化简与求值(3)

  (12)三角恒等式的证明(1)

  (13)条件恒等式的证明(1)

  (14)三角形的求值与证明(3)

高三数学教学工作计划 篇3

  【内容分析】

  本节课是《普通高中课程标准实验教科书·数学5》(人教A版)第二章数列第二节等差数列第一课时。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

  【教学目标】

  1.知识目标:理解等差数列定义,掌握等差数列的通项公式。

  2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

  3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣。

  【教学重点】

  ①等差数列的概念;②等差数列的通项公式的推导过程及应用。

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程。

  【学情分析】

  我所教学的学生是我校高一(10)班的学生(平行班学生),经过快一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1.教法

  ①诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

  2.学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

  用多种方法对等差数列的通项公式进行推导。

  在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  【教学过程】

  教学内容问题预设师生互动预设意图

  创设情景,提出问题

  问题提出:

  1。从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2。水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2。5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3。我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10 000元钱,年利率是0。72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数。

  学生:

  1:0,5,10,15,20,25,…。

  2:18,15。5,13,10。5,8,5。5。

  3:10072,10144,10216,10288,10360。

  从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

  观察归纳,形成定义

  ①0,5,10,15,20,25,…。

  ②18,15。5,13,10。5,8,5。5。

  ③10072,10144,10216,10288,10360。

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

  通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。

  举一反三,理解定义

  练一练:判定下列数列是否为等差数列?若是,指出公差d。

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,—1,—2;

  (4)4,7,10,13,16。

  思考4设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

  强化学生对等差数列“等差”特征的理解和应用。

  思考5已知等差数列:

  8,5,2,…,求第200项?

  思考6已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会递推思想;让学生初步尝试处理数列问题的常用方法。

  引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力。

  理解通项,简单应用

  变1判断—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

  变2在等差数列{an}中,已知a5=10,a12=31, 求a1,d和an。

  变3某市出租车的计价标准为1。2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的`地,且一路畅通,等候时间为0,需要支付多少车费?

  教师:给出问题,让学生自己操练,教师巡视学生答题情况。

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式。

  主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。

  课堂小结,课外作业

  1。一个定义:

  等差数列的定义

  2。一个公式:

  等差数列的通项公式

  3。二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出小结内容,并适当解析。

  教师展示作业:

  P39练习:2,3。

  P40习题2。2A组:1,4。

  引导学生去联想这一概念所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。

  【设计反思】

  1。本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。

  2。本课各环节的设计环环相扣、简洁明了、重点突出,引导分析细致、到位、适度。如:判断某数列是否成等差数列,这是促进概念理解的好素材;此外,用方程的思想指导等差数列基本量的运算等等。学生在经历过程中,加深了对概念的理解和巩固。

  3。本节课教学体现了课堂教学从“灌输式”到“引导发现式”的转变,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

  4。本人认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好地帮助学生落实“双基”,更好地帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。

高三数学教学工作计划 篇4

  一、目的:

  根据数学学科的特点与历年的高考说明及高考中数学的地位,使数学复习有一个依据顺序,协调班级之间的教学复习工作,使教师充分发挥各自特长、特点、优点,出色完成高三数学复习的教学任务。

  二、指导思想:

  以20xx年《说明》为指导应以考试内容为准;注意各知识点的难度控制,加强复习回归教材。针对我校高三学生现有的水平及实际情况,以课本内容为基础,新课程标准及高考说明为依据,选择以《新高考资讯》为二轮复习材料,根据本校情况制定教学案,运用恰当的途径,熟读、细读高考说明,准确把握高考的信息、动向,规范复习,夯实基础,充分发挥本学科的科任教师的特长、特点,协调与其他学科间的横向关系。

  三、复习措施

  1、加强备课组的协作,发挥集体智慧。各备课组成员要心往一处想,劲往一处使,针对复习中存在的突出问题,加强集体备课,共同研究寻找对策,加强互相交流,互相学习,精心筛选各类高考信息。

  2、切实抓好强化训练、午训、晚训练,首先要精选试题,立足于中、低档题目,不能盲目拔高,追求“一次到位”,去建造空中楼阁。要注重知识的.巩固和滚动,并要求做到批改、讲评及时、到位,同时要求学生去反思错解原因,以达到巩固知识,提高能力。

  3、注重对临界生的学习方法的指导。指导学养成良好的学习习惯,培养学生学习兴趣和自学能力,强调规范答题,帮助他们查漏补缺。

  4、加强应试心理、技巧的指导。为学生减压,开启他们心灵之窗,使他们保持最佳状态。

  四、各轮复习的侧重点与要求

  (1)自开学到2月底完成第—轮复习,这一轮复习的目标是夯实基础,使学生对教材中的基本知识结构、基本概念和基本规律有清晰的认识。

  (2)从2月下旬到5月初为第二轮复习,这一轮复习的目标是提升能力,主要是专题的形式,这一阶段的目的是辨析各知识块内的基本概念及其相互关系,对主干知识进行梳理串联构成科学、系统的知识网络,总结小范围内综合问题的解题方法与技巧,初步培养分析问题和解决问题的能力和综合能力。第二轮复习重点在提高能力上下功夫,把目标瞄准中档题。第二轮复习我们计划组织每周一至二套综合训练题,我们的编写原则有三点:体现教材的特点,符合考纲、考试说明的要求和我们的复习训练思想,并且体现新颖、准确与导向性,有助于学生疏理归纳训练,要求做到能力训练步步提高,专题训练层层落实,综合训练融会贯通。

  (3)第三阶段从5月初到5月中旬为“综合训练强化阶段”,要求“纵横联系、整合综合、强化训练、全面提高”。以强化数学基本思想和解题方法为主,强调“数形结合”、“分类讨论”、“化归变换”、“待定系数”、“换元引参”等数学思想的应用,讲解填空题、解答题的破译技巧。选择知识交汇点多的典型问题分析与探索,强调知识间的联系和综合。对重点、难点、疑点、误点、弱点、考点进行强化训练。加强外地市信息源的反馈,选择合适的试卷加以模拟,强化适应考试(每周至少一次),并充分发挥考试的目的和功能。

  (4)第四阶段从5月中旬到六月初为“考前调整、稳定心态”阶段,要求“自学为主、个辅为辅、适度训练、轻装上阵”。培养考试的全局观念、时间感觉、题目的分数感觉,理解掌握应试的策略等各种安排。

  教学进度

  二月份:

  概率、统计2、13-19

  概率、统计2、20-25

  本章测试拟题:王福林老师

  综合测试拟题:易怀平老师

  算法初步2、27-3、4

  推理与证明

  复数

  本章测试拟题:冯顺喜老师

  综合测试拟题:张烊老师

  3月中旬至4月底:第二轮复习阶段

  3.4—3.25集合、函数与导数综合

  综合试卷拟题:

  3.26—4.6 数列综合

  综合试卷拟题:

  4.8—4.14 三角函数与平面向量综合

  综合试卷拟题:

  4.15—4.21直线与圆锥曲钱的位置

  综合试卷拟题:

  4.23—4.28 立体几何综合

  综合试卷拟题:

  4月下旬至5月中旬:综合训练强化阶段

  5月中旬至6月初:考前调整,考前指导稳定心态。

【高三数学教学工作计划】相关文章:

高三数学教学工作计划10-06

高三数学教学的总结05-22

高三数学的教学总结08-29

高三数学教学计划05-31

高三数学教学总结范文10-01

高三数学的教学总结范文10-27

高三数学教学工作计划14篇10-07

高三数学教学工作计划精选22篇08-09

高三数学教学工作计划(精选14篇)06-09

【精选】高三数学教学工作计划四篇07-07