高一上学期数学教学计划集合5篇
光阴迅速,一眨眼就过去了,又迎来了一个全新的起点,让我们一起来学习写计划吧。好的计划是什么样的呢?下面是小编精心整理的高一上学期数学教学计划5篇,欢迎大家分享。
高一上学期数学教学计划 篇1
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理数},
B = {x | x是无理数},
C = {x | x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的'元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 设集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老师要求学生对性质进行合理解释. 培养学生数学思维能力.
形成概念 自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B = {x | x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.
应用举例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新华中学开运动会,设
A = {x | x是新华中学高一年级参加百米赛跑的同学},
B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};
(2)直线l1,l2平行可表示为
L1∩L2 = ;
(3)直线l1,l2重合可表示为
L1∩L2 = L1 = L2. 提升学生的动手实践能力.
归纳总结 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性质:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结
老师点评、阐述 归纳知识、构建知识网络
课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华
备选例题
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范围;
(2)若A∪B = {x | x<1},求a的取值范围.
【解析】(1)如下图所示:A = {x | –1
∴数轴上点x = a在x = – 1左侧.
∴a≤–1.
(2)如右图所示:A = {x | –1
∴数轴上点x = a在x = –1和x = 1之间.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.
当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.
例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.
当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.
当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.
综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一上学期数学教学计划 篇2
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次
时
内 容
重 点、难 点
第1周
9.2~9.6
集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;
难点:理解概念
第2周
9.7~9.13
集合的基本运算
函数的概念、
函数的表示法
能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20
单调性与最值、
奇偶性、实习、小结
学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27
指数与指数幂的运算、
指数函数及其性质
掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4
(9月月考国庆放假)
第6周
10.5~10.11
对数与对数运算、
对数函数及其性质
理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18
幂函数
从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25
方程的'根与函数零点,
二分法求方程近似解,
能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1
几类不同增长的模型、函数模型应用举例
对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
11.2~11.8
期中复习及考试
分章归纳复习+1套模拟测试
第11周
11.9~11.15
任意角和弧度制
任意角的三角函数
了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22
三角函数的诱导公式
三角函数的图像和性质
借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29
函数y=Asin(wx+q)的图像
借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6
三角函数模型的简单应用 单元考试
会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13
平面向量的实际背景及基本概念,平面向量的线性运算
掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20
平面向量的基本定理及坐标表示,平面向量的数量积,
理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27
平面向量应用举例,
小结
用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3
两角和与差点正弦、余弦和正切公式
能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10
简单的三角恒等变换
期末复习
高一上学期数学教学计划 篇3
进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的`形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
高一上学期数学教学计划 篇4
本学期担任高一12、13两班的数学教学工作,两班学生共有100人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划:
一、情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
二、能力要求、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示立体集合、函数、三角函数、平面向量有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过三角函数的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
三、知识目标集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
(2)掌握一元二次不等式、绝对值不等式的解法。
2.函数
(1)了解映射的概念,理解函数的概念.
(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.
(3)了解反函数的'概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.
(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.
3.三角函数
4.平面向量
四、教学重点
1、集合、子集、补集、交集、并集.一元二次不等式的解法
2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.3.三角函数的图像和性质
4、平面向量的基础知识和基本的运算。
五、教学难点
1.函数、指数函数、对数函数2.三角函数的概念、图像和性质
六、工作措施.
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
高一上学期数学教学计划 篇5
一 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的'关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 教学目标分析:
知识与技能:
1。结合方程根的几何意义,理解函数零点的定义;
2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3。使学生感受学习、探索发现的乐趣与成功感
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 教学准备
导学案,自主探究,合作学习,电子交互白板。
五 教学过程设计:略
六、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
七、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间
八、巩固练习(略)
小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。
【高一上学期数学教学计划】相关文章:
高一上学期数学教学计划10-27
(精)高一上学期数学教学计划08-29
高一上数学教学计划10-13
高一上学期数学教学计划汇总6篇07-09
高一上学期数学教学计划(通用20篇)09-06
高一上学期教学计划生物,高中生物高一上学期教学计划06-03
高一上学期英语学期教学计划(精选11篇)08-28
高一上学期语文教学计划07-04
高一上学期英语教学计划10-13
高一上册数学教学计划(精选11篇)08-31