教学计划

九年级下册数学教学计划

时间:2024-05-26 01:38:58 教学计划 我要投稿
  • 相关推荐

【精品】九年级下册数学教学计划三篇

  时间过得可真快,从来都不等人,我们的工作又迈入新的阶段,是时候认真思考计划该如何写了。那么计划怎么拟定才能发挥它最大的作用呢?以下是小编帮大家整理的九年级下册数学教学计划3篇,希望对大家有所帮助。

【精品】九年级下册数学教学计划三篇

九年级下册数学教学计划 篇1

  教学目标

  【知识与技能】

  使学生能利用描点法作出函数y=ax2+k的图象.

  【过程与方法】

  让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.

  【情感、态度与价值观】

  培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.

  重点难点

  【重点】

  会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.

  【难点】

  正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.

  教学过程

  一、问题引入

  1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.

  2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?

  3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?

  二、新课教授

  问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?

  (画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)

  问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?

  师生活动:

  学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.

  教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.

  解:(1)列表:

  x…-3-2-10123…

  y=x2…9410149…

  y=x2+1…105212510…

  (2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.

  (3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.

  问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

  师生活动:

  教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?

  学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.

  教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.

  学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的图象上的相应点向上移动了一个单位.

  问题4:函数y=x2+1和y=x2的图象有什么联系?

  学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.

  问题5:现在你能回答前面提出的第2个问题了吗?

  生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).

  问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?

  生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.

  问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.

  师生活动:

  教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.

  解:先列表:

  x…-2-1.5-1-0.500.511.52…

  y=2x2+1…95.531.511.535.59…

  y=2x2-1…73.51-0.5-1-0.513.57…

  然后描点画图,得y=2x2+1,y=2x2-1的图象.

  教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.

  问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?

  师生活动:

  教师让学生观察y=x2-1的图象.

  学生动手画图,观察、讨论、归纳.

  学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.

  三、巩固练习

  1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的图象.

  (1)填表:

  x… …

  y=x2… …

  y=x2+2… …

  y=x2-2… …

  (2)描点,连线:

  【答案】略

  2.观察第1题中所画的图象,并填空:

  (1)抛物线y=x2+2的.开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;

  (2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;

  (3)对于函数y=x2,当x=时,函数取最值,为.

  对于函数y=x2+2,当x=时,函数取最值,为.

  对于函数y=x2-2,当x=时,函数取最 值,为 .

  【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2

  四、课堂小结

  1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.

  2.抛物线y=ax2+k(a≠0)的性质.

  (1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).

  (2)当a0时,抛物线开口向上,并向上无限伸展;

  当a0时,抛物线开口向下,并向下无限伸展.

  (3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.

  当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.

  教学反思

  通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.

  以上就是数学网为大家整理的九年级下册数学教学计划:第6章第2节二次函数的图象和性质(2课时),怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!

九年级下册数学教学计划 篇2

  一、学情分析

  本学期我担任初三年级两个班的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自制能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。

  二、教材分析

  本学期的内容只剩两章:圆与统计与概率。

  圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,视图。本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本几何体或实物原型,是本章的难点。

  统计与概率这章有总体与样本、用样本估计这两节内容。统计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。

  除了这两章,还要复习初中数学教材其他的内容。

  三、教学目标

  1、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的'侧面展开图,平行投影和中心投影,三视图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

  2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要内容进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

  3、情感目标及价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

  四、教学重与难点

  重点:

  圆这章中垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。

  统计与概率这章的重点是用样本的某种特殊性来估计总体的统计思想方法。

  难点:

  垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本的几何体或实物原型。

  统计估计是用样本的某种特殊性来估计总体的统计思想方法。

  五、教学中要采取的措施

  1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划。

  2、认真上好每一堂课,抓住关键,分散难点,突出重点,在培养能力上下功夫。

  3、重视课后反思,及时将每一节课的得失记录下来,不断的积累教学经验。

  4、积极与其他老师沟通,提高教学水平。

  5、积极听取家长与学生良好的合理建议。

  6、以“两头”带“中间”的战略。

  7、注重教学中的自主学习、合作学习、探索学习等学习方法的引导。

  8、开展课内、课外活动,激发学生的学习兴趣。

九年级下册数学教学计划 篇3

  一、基本情况:

  本学期是初中学习的关键时期,本学期我担任九年级(4)班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

  二、指导思想:

  初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过九年级数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  三、教学内容:

  本学期所教初三数学包括二次函数和圆是新授课外,主要是综合复习,迎接中考。

  四、教学目的:

  1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  2、知识与技能:理解点、直线、圆与圆的位置关系概念。掌握圆的切线及与圆有关的角等概念和计算。理解数据的整理及分析等有关概念,能够计算方差、标准差等,能够用表格或列树状图的方法计算概率,对上述知识作一些简单的应用。掌握初中数学教材、数学学科“基本要求”的知识点。

  3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“六大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生

  五、教学重难点

  第一阶段(第5周——第12周):全面复习基础知识,加强基本技能训练。

  这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

  1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或变式题,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。必须深钻教材,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成结构。课本中的例题、练习和作业要让学生弄懂、会做,书后的“读一读”、“想一想”、“试一试”,也要学生认真想一想,集中精力把九年级和八年级下的教学内容等重点内容的例题、习题逐题认认真真地做一遍,并注意解题方法的归纳和整理。一味搞题海战术,整天埋头让学生做大量的课外习题,其效果并不明显,有本末倒置之嫌。

  教师在这一阶段的教学主要按知识块组织复习,可将代数部分分为六章节:第一章数与式;第二章方程与不等式;第三章函数;第四章基本图形;第五章图形与变换;第六章统计与概率。复习中可由教师提出每个章节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,还要注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

  2、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的.内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。

  中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

  3、重视对数学思想的理解及运用。如告诉了自变量与因变量,要求写出函数解析式,或者用函数解析式去求交点等问题,都需用到函数的思想,教师要让学生加深对这一思想的深刻理解,多做一些相关内容的题目;再如方程思想,它是利用已知量与未知量之间联系和制约的关系,通过建立方程把未知量转化为已知量;再如数形结合的思想,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换,建议复习时应着重分析几个题目,让学生悉心体会数形结合问题在题目中是如何呈现的和如何转换的。

  第二阶段(第13周——第18周):综合运用知识,加强能力培养

  中考复习的第二阶段应以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

  培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个章节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。如果说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。

  六、教学措施:

  针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

  1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

  2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

  3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

  4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

【九年级下册数学教学计划】相关文章:

下册数学教学计划08-19

小学数学下册教学计划01-13

小学数学下册青岛版教学计划08-23

初一数学下册教学计划10-08

中职学校数学下册教学计划(精选10篇)09-06

7年级下册数学教学计划06-15

高三数学下册教学计划(通用10篇)04-11

初一数学下册教学计划(精选17篇)08-20

数学五年级下册教学计划09-19

数学五年级下册的教学计划05-07