教案

高中数学教案

时间:2024-07-27 11:36:45 教案 我要投稿

高中数学教案

  作为一位杰出的教职工,往往需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的高中数学教案,欢迎阅读,希望大家能够喜欢。

高中数学教案

高中数学教案1

  教学目标:

  1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

  2.会求一些简单函数的反函数.

  3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

  4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

  教学重点:求反函数的方法.

  教学难点:反函数的概念.

  教学过程

  教学活动

  设计意图一、创设情境,引入新课

  1.复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

  3.板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

  二、实例分析,组织探究

  1.问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2.问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3.渗透反函数的概念.

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

  三、师生互动,归纳定义

  1.(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

  2.引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因.

  3.两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4.函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1.(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x-1 (2)y=x 1

  【例2】求函数的反函数.

  (教师板书例题过程后,由学生总结求反函数步骤.)

  2.总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x与y互换得.

  3° 写出反函数的定义域.

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________.

  (3)(x<0)的反函数是__________.

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

  五、巩固强化,评价反馈

  1.已知函数 y=f(x)存在反函数,求它的`反函数 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

  六、作业

  习题2.4第1题,第2题

  进一步巩固所学的知识.

  教学设计说明

  "问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高中数学教案2

  一、教学目标

  1、知识与能力目标

  ①使学生理解数列极限的概念和描述性定义。

  ②使学生会判断一些简单数列的极限,了解数列极限的“e—N"定义,能利用逐步分析的方法证明一些数列的极限。

  ③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

  2、过程与方法目标

  培养学生的极限的思想方法和独立学习的能力。

  3、情感、态度、价值观目标

  使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

  二、教学重点和难点

  教学重点:数列极限的概念和定义。

  教学难点:数列极限的“ε―N”定义的理解。

  三、教学对象分析

  这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的.极限。但要使他们在一节课内掌握“ε—N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

  四、教学策略及教法设计

  本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

  五、教学过程

  1、创设情境

  课件展示创设情境动画。

  今天我们将要学习一个很重要的新的知识。

  情境

  (1)我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

  情境

  (2)我国古代哲学家庄周所著的《庄子·天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,无限次地切,每次都切一半,问是否会切完?

  大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

  2、定义探究

  展示定义探索(一)动画演示。

  问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

  (1)1/2,2/3,3/4,n/n—1

  (2)0.9,0.99,0.999,0.9999,1—1/10n

  问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

  师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

  那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

  那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

  提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

  展示定义探索(二)动画演示。

  师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O—1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0.0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

  数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an—A|n的极限。

  课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

  定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。

  3、知识应用

  这里举了3道例题,与学生一块思考,一起分析作答。

  例1、已知数列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)计算an—0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

  (3)确定这个数列的极限。

  例2、已知数列:

  已知数列:3/2,9/4,15/8,2+(—1/2)n。

  猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

  例3、求常数数列一7,一7,一7,一7,的极限。

  4、知识小结

  这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

  课后练习:

  (1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

  (2)课本练习1,2。

  5、探究性问题

  设计研究性学习的思考题。

  提出问题:

  芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O。1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里这样一直追下去,阿基里斯能追上乌龟吗?

  这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

高中数学教案3

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范 探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1 列举从4个元素 中任取2个元素的'所有组合.

  例2 计算:(1) ;(2) .

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3 已知 ,求 的所有值.

  (学生活动)思考分析.

  解 首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得 ②

  综合①、②,得 ,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习 学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知 ,求 .

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

高中数学教案4

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的.推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

高中数学教案5

  各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

  下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  (二)教学内容

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

  三、重难点分析

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

  五、课堂设计

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景,引出“三个一次”的关系

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

  为此,我设计了以下几个问题:

  1、请同学们解以下方程和不等式:

  ①2x-7=0;②2x-70;③2x-70

  学生回答,我板书。

  2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

  3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

  4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

  ①2x-7=0的解恰是函数y=2x-7的图象与x轴

  交点的横坐标。

  ②2x-70的解集正是函数y=2x-7的图象

  在x轴的上方的点的横坐标的集合。

  ③2x-70的解集正是函数y=2x-7的图象

  在x轴的下方的点的横坐标的集合。

  三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

  (二)比旧悟新,引出“三个二次”的关系

  为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

  看函数y=x2-x-6的.图象并说出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

  ②不等式x2-x-60的解集是

  {x|x-2,或x3};

  ③不等式x2-x-60的解集是

  {x|-23}。

  此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

  学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

  (三)归纳提炼,得出“三个二次”的关系

  1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

  2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

  (四)应用新知,熟练掌握一元二次不等式的解集

  借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

  例1、解不等式2x2-3x-20

  解:因为Δ0,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

  下面我们接着学习课本例2。

  例2 解不等式-3x2+6x2

  课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

  通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

  4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

  (五)总结

  解一元二次不等式的“四部曲”:

  (1)把二次项的系数化为正数

  (2)计算判别式Δ

  (3)解对应的一元二次方程

  (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

  (六)作业布置

  为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

  (1)必做题:习题1.5的1、3题

  (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

  (七)板书设计

  一元二次不等式解法(1)

  五、教学效果评价

  本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

高中数学教案6

  课程概述:

  本课程为高中数学网课教学,针对的学生群体为高一学生,总共有40节课。课程主要内容包括:集合、函数、三角函数、数列、立体几何、概率论等。

  教学历程:

  在教学历程中,我们采用在线直播教学的方式,每节课的时长为1小时。每周安排4节课,共进行2个月。每节课开始前,我们会提前通知学生上课的时间和地点,以确保学生能够准时参加。

  教学内容和教学方法:

  在教学内容方面,我们按照高中数学的教学大纲进行安排,包括基础概念、公式和解题方法等。教学方法上,我们采用多种形式的教学方式,包括在线直播讲解、PPT演示、习题讲解等。为了提高学生的学习兴趣,我们还会引入一些生活中的例子进行讲解。

  教学效果:

  通过本课程的学习,学生们的数学成绩有了明显的'提高。其中,80%的学生掌握了课程中的所有内容,15%的学生掌握了一些难度较高的内容。在课后作业的完成情况方面,85%的学生能够独立完成作业,15%的学生需要在老师的指导下完成作业。此外,学生们还学会了如何应用数学知识解决生活中的问题。

  反思和建议:

  在课程结束后,我们对本次教学进行了反思,发现在教学的过程中需要进一步加强习题的讲解,以帮助学生更好地掌握数学知识和解题方法。同时,我们建议教师在教学过程中注重学生的个体差异,针对不同的学生采用不同的教学方法和策略。

高中数学教案7

  教学要求:

  理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

  教学重点:

  熟练地求交点。

  教学过程:

 一、复习准备:

  1、直线A x+B+C=0与直线A x+B+C=0,平行的充要条件是xx,相交的充要条件是xx;

  重合的.充要条件是xx,垂直的充要条件是xx。

  2、知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

  1、教学例题:

  ①出示例:求直线=x+1截曲线=x所得线段的中点坐标。

  ②由学生分析求解的思路→学生练→老师评讲

  (联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

  ③试求→订正→小结思路。→变题:求弦长

  ④出示例:当b为何值时,直线=x+b与曲线x+=4分别相交?相切?相离?

  ⑤分析:三种位置关系与两曲线的交点情况有何关系?

  ⑥学生试求→订正→小结思路。

  ⑦讨论其它解法?

  解一:用圆心到直线的距离求解;

  解二:用数形结合法进行分析。

  ⑧讨论:两条曲线F(x,)=0与F(x,)=0相交的充要条件是什么?

  如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

  (联立方程组后,一解时:相切或相交;二解时:相交;无解时:相离)

  2、练习:

  求过点(—2,—)且与抛物线=x相切的直线方程。

三、巩固练习:

  1、若两直线x+=3a,x-=a的交点在圆x+=5上,求a的值。

  (答案:a=±1)

  2、求直线=2x+3被曲线=x截得的线段长。

  3、课堂作业:书P72 3、4、10题。

高中数学教案8

  教学目标

  1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;

  2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;

  3掌握本章的全部定理和公理;

  4理解本章的数学思想方法;

  5了解本章的题目类型。

  教学重点和难点

  重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。

  教学设计过程

  一、本章的知识结构

  二、本章中的概念

  1直线、射线、线段的概念。

  2线段的中点定义。

  3角的两个定义。

  4直角、平角、周角、锐角、钝角的概念。

  5互余与互补的角。

  三、本章中的公理和定理

  1直线的公理;线段的公理。

  2补角和余角的性质定理。

  四、本章中的主要习题类型

  1对直线、射线、线段的概念的理解。

  例1下列说法中正确的是( )。

  A延长射线OP B延长直线CD

  C延长线段CD D反向延长直线CD

  解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。

  例2如图1-57中的线段共有多少条?

  解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

  2线段的和、差、倍、分。

  例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD= BC,那么线段AD是线段AC的( )。

  A.B. C. D.

  解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。

  解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5

  3角的概念性质及角平分线。

  例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数。

  解:因为OD是∠AOB的平分线,所以∠BOD= ∠AOB;又因为OE是∠BOC的平分线,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  则∠EOD=90°。

  例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的`度数的比是多少?

  解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  则∠AOC=60°,(同角的余角相等)

  ∠AOC与∠COB的度数的比是2∶1。

  4互余与互补角的性质。

  例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。

  解:因为COD为直线,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB为直线,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB为直线,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。

  解:设第一个角为x°,则另一个角为3x°,

  依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一个角为10°,另一个角为30°。

  5度分秒的换算及和、差、倍、分的计算。

  例9 (1)将4589°化成度、分、秒的形式。

  (2)将80°34′45″化成度。

  (3)计算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)约为8058°。

  (3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)

  五、本章中所学到的数学思想

  1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。

  2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。

  3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。

  六、本章的疑点和误点分析

  概念在应用中的混淆。

  例10判断正误:

  (1)在∠AOB的边OA的延长线上取一点D。

  (2)大于90°的角是钝角。

  (3)任何一个角都可以有余角。

  (4)∠A是锐角,则∠A的所有余角都相等。

  (5)两个锐角的和一定小于平角。

  (6)直线MN是平角。

  (7)互补的两个角的和一定等于平角。

  (8)如果一个角的补角是锐角,那么这个角就没有余角。

  (9)钝角一定大于它的补角。

  (10)经过三点一定可以画一条直线。

  解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。

  (2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。

  (3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。

  (4)对.∠A的所有余角都是90°-∠A。

  (5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.

  (6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。

  (7)对。符合互补的角的定义。

  (8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。

  (9)对。因为钝角的补角是锐角,钝角一定大于锐角。

  (10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。

  板书设计

  回顾与反思

  (一)知识结构(四)主要习题类型(五)本章的数学思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑误点分析

  (三)本章的公理和定理·

  例9

高中数学教案9

  教学目标:

  1.理解流程图的选择结构这种基本逻辑结构

  2.能识别和理解简单的框图的功能

  3.能运用三种基本逻辑结构设计流程图以解决简单的问题

  教学方法:

  1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知

  2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构

  教学过程:

  一、问题情境

  1.情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

  其中(单位:xx)为行李的重量.

  2.试给出计算费用(单位:xx元)的一个算法,并画出流程图

  二、学生活动

  学生讨论,教师引导学生进行表达

  三、建构数学

  1.选择结构的'概念:

  先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构

  虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行

  2.说明:

  (1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

  3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案10

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能。

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解。

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。

  初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)

  (同学议论结果,答案是肯定的)

  教师提问:什么是命题?

  (学生进行回忆、思考。)

  概念总结:对一件事情作出了判断的语句叫做命题。

  (教师肯定了同学的回答,并作板书。)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。

  (教师利用投影片,和学生讨论以下问题。)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题。

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”。

  “或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。

  对“或”的理解,可联想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。

  对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。

  对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .

  命题可分为简单命题和复合命题。

  不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

  由简单命题和逻辑联结词构成的'命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。

  (4)命题的表示:用 , , , ,……来表示。

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)

  我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。

  对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。

  (1) ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若 ,则 .

  (让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)

  例3 写出下表中各给定语的否定语(用课件打出来).

  若给定语为

  等于

  大于

  是

  都是

  至多有一个

  至少有一个

  至多有个

  其否定语分别为

  分析:“等于”的否定语是“不等于”;

  “大于”的否定语是“小于或者等于”;

  “是”的否定语是“不是”;

  “都是”的否定语是“不都是”;

  “至多有一个”的否定语是“至少有两个”;

  “至少有一个”的否定语是“一个都没有”;

  “至多有 个”的否定语是“至少有 个”。

  (如果时间宽裕,可让学生讨论后得出结论。)

  置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)

  4.课堂练习:第26页练习1

  5.课外作业:第29页习题1.6

高中数学教案11

  课题:

  等比数列的概念

  教学目标

  1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

  2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

  3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导、

  教学用具

  投影仪,多媒体软件,电脑、

  教学方法

  讨论、谈话法、

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

  这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1、等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

  2、对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0、

  用数学式子表示等比数列的定义、

  是等比数列

  ①、在这个式子的写法上可能会有一些争议,如写成

  ,可让学生研究行不行,好不好;接下来再问,能否改写为

  是等比数列?为什么不能?式子给出了数列第项与第

  项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

  3、等比数列的通项公式(板书)

  问题:用和表示第项

  ①不完全归纳法

  ②叠乘法,…,,这个式子相乘得,所以(板书)

  (1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

  (2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

  这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

  三、小结

  1、本节课研究了等比数列的.概念,得到了通项公式;

  2、注意在研究内容与方法上要与等差数列相类比;

  3、用方程的思想认识通项公式,并加以应用。

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

  参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案12

  1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习

  2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

  4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

  5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

  6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

  7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的'一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

  8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

  9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

高中数学教案13

  教学目标:

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义。

  (3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力。

  教学重点:

  子集、补集的概念

  教学难点:

  弄清元素与子集、属于与包含之间的区别

  教学用具:

  幻灯机

  教学过程设计

  (一)导入新课

  上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。

  【提出问题】(投影打出)

  已知xx,xx,xx,问:

  1、哪些集合表示方法是列举法。

  2、哪些集合表示方法是描述法。

  3、将集M、集从集P用图示法表示。

  4、分别说出各集合中的元素。

  5、将每个集合中的元素与该集合的关系用符号表示出来、将集N中元素3与集M的关系用符号表示出来。

  6、集M中元素与集N有何关系、集M中元素与集P有何关系。

  【找学生回答】

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(笔练结合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

  5、xx,xx,xx,xx,xx,xx,xx,xx(笔练结合板演)

  6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

  【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题、

  (二)新授知识

  1、子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作:xx读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:AxxB或BxxA、

  性质:①xx(任何一个集合是它本身的子集)

  ②xx(空集是任何集合的子集)

  【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

  【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的'空集也是B的子集,而这个集合中并不含有B中的元素、由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例:xx,可见,集合xx,是指A、B的所有元素完全相同。

  (3)真子集:对于两个集合A与B,如果xx,并且xx,我们就说集合A是集合B的真子集,记作:xx(或xx),读作A真包含于B或B真包含A。

  【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B。

  【提问】

  (1)xx写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2)xx判断下列写法是否正确

  ①xxAxx②xxAxx③xx④AxxA

  性质:

  (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,则xxA;

  (2)如果xx,xx,则xx。

  例1xx写出集合xx的所有子集,并指出其中哪些是它的真子集、

  解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

  【注意】(1)子集与真子集符号的方向。

  (2)易混符号

  ①“xx”与“xx”:元素与集合之间是属于关系;集合与集合之间是包含关系。如xxR,{1}xx{1,2,3}

  ②{0}与xx:{0}是含有一个元素0的集合,xx是不含任何元素的集合。

  如:xx{0}。不能写成xx={0},xx∈{0}

  例2xx见教材P8(解略)

  例3xx判断下列说法是否正确,如果不正确,请加以改正、

  (1)xx表示空集;

  (2)空集是任何集合的真子集;

  (3)xx不是xx;

  (4)xx的所有子集是xx;

  (5)如果xx且xx,那么B必是A的真子集;

  (6)xx与xx不能同时成立、

  解:(1)xx不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确、空集是任何非空集合的真子集;

  (3)不正确、xx与xx表示同一集合;

  (4)不正确、xx的所有子集是xx;

  (5)正确

  (6)不正确、当xx时,xx与xx能同时成立、

  例4xx用适当的符号(xx,xx)填空:

  (1)xx;xx;xx;

  (2)xx;xx;

  (3)xx;

  (4)设xx,xx,xx,则AxxBxxC、

  解:(1)0xx0xx;

  (2)xx=xx,xx;

  (3)xx,xx∴xx;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C、

  【练习】教材P9

  用适当的符号(xx,xx)填空:

  (1)xx;xx(5)xx;

  (2)xx;xx(6)xx;

  (3)xx;xx(7)xx;

  (4)xx;xx(8)xx、

  解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

  提问:见教材P9例子

  (二)xx全集与补集

  1、补集:一般地,设S是一个集合,A是S的一个子集(即xx),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作xx,即

  、

  A在S中的补集xx可用右图中阴影部分表示、

  性质:xxS(xxSA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则xxSA={2,4,6};

  (2)若A={0},则xxNA=N;

  (3)xxRQ是无理数集。

  2、全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用xx表示。

  注:xx是对于给定的全集xx而言的,当全集不同时,补集也会不同。

  例如:若xx,当xx时,xx;当xx时,则xx。

  例5xx设全集xx,xx,xx,判断xx与xx之间的关系。

  解:

  练习:见教材P10练习

  1、填空:

  xx,xx,那么xx,xx。

  解:xx,

  2、填空:

  (1)如果全集xx,那么N的补集xx;

  (2)如果全集,xx,那么xx的补集xx(xx)=xx、

  解:(1)xx;(2)xx。

  (三)小结:本节课学习了以下内容:

  1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)

  2、五条性质

  (1)空集是任何集合的子集。ΦxxA

  (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

  (3)任何一个集合是它本身的子集。

  (4)如果xx,xx,则xx、

  (5)xxS(xxSA)=A

  3、两组易混符号:(1)“xx”与“xx”:(2){0}与

  (四)课后作业:见教材P10习题1、2

高中数学教案14

  三维目标:

  1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2、过程与方法:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

  4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

  教学方法:

  讲练结合法

  教学用具:

  多媒体

  课时安排:

  1课时

  教学过程:

  一、问题情境

  假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

  二、探究新知

  1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

  2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

  下列抽样的方式是否属于简单随机抽样?为什么?

  (1)从无限多个个体中抽取50个个体作为样本。

  (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

  (3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

  3、常用的简单随机抽样方法有:

  (1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

  分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的.n个个体作为样本。

  (2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

  第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;

  继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

  三、课堂练习

  四、课堂小结

  1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

  2、简单随机抽样的方法:抽签法随机数表法

  五、课后作业

  P57练习1、2

  六、板书设计

  1、统计的有关概念

  2、简单随机抽样的概念

  3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

  4、课堂练习

高中数学教案15

  教学目标:

  1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2。会求一些简单函数的反函数。

  3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1。复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3。板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1。问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的'图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2。问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3。渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1。(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2。引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3。两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4。函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1。(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2。总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x与y互换得。

  3° 写出反函数的定义域。

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2。4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

【高中数学教案】相关文章:

高中数学教案01-27

高中数学教案模板11-15

高中数学教案模板范文09-29

人教版数学教案03-13

集合的数学教案02-28

比长短数学教案07-13

小学数学教案08-02

小学数学教案(精选)08-04

【精选】小学数学教案08-12

数学教案范文10-31