- 相关推荐
《倒数的认识》教案优秀
作为一名教师,常常要根据教学需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?以下是小编为大家整理的《倒数的认识》教案优秀,希望能够帮助到大家。
《倒数的认识》教案优秀1
教学内容:
新人教版六年级数学上册的例1。
教学目标:
通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:
理解倒数的意义,学会求倒数的方法。
教学难点:
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学准备:
多媒体课件。
教学过程:
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的`语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
理解倒数的意义。
掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
探究讨论,理解倒数的意义。
(课件出示教材例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?
深化理解。
乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
运用概念。
讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
填一填。(出示课件)
乘积是()的()个数()倒数。
a和b互为倒数,那a的倒数是(),b的倒数是()。
只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
一个真分数的倒数一定是()。
判断题。(演示课件)
5/3是倒数。()
因为3/4×4/3=,所以4/3是倒数。()
真分数的倒数大于1,假分数的倒数小于1。()
因为1/4+3/4=1,所以1/4和/4互为倒数。()
说一说。(课本的第3题)
五、课堂小结:
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
倒数的认识
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
《倒数的认识》教案优秀2
【教材分析】
教材把倒数的认识编组为分数乘法这一单元的最后独立一节,其意图就是突出这个知识点的地位和作用。因为倒数的概念是学习分数除法必须具备的基础知识,一个数除以分数的计算方法是乘为乘这个数的倒数。教材还注意突出倒数是表示两数间的关系,是相互依存的。要使学生初步体会到倒数不能孤立存在。
【学情分析】
学生已经掌握了分数乘法的意义,通过对乘法算式的观察,能够比较容易的掌握本课内容。
【教学目标】
1、使学生理解倒数的意义,掌握求倒数的方法.
2、培养学生的观察能力,找出规律。
3、培养学生的`学习兴趣。
【教学过程】
活动一:复习口算下面各题
640
380
活动二:教学倒数的意义.
1、上面的两组题有什么不同?
2、像第二组这样,乘积是1的两个数叫做互为倒数.
3、举例说明什么叫做互为倒数.
4、倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数。
5、让学生试着说一说第二组算式中两个数的关系.
活动三:教学例题(求倒数的方法).
观察上面第二组算式,发现规律进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.
怎样找出的倒数呢?你能用刚才发现的规律找出来吗?
分子、分母调换位置
1的倒数是多少?:0有倒数吗?
0为什么没有倒数?(因为0不能作分母,所以0没有倒数)
活动四:做一做书第24页的做一做.
学生独立解答,集体订正时
活动五:巩固练习
1.做练习六的第1、2题.学生完成。
2.做练习六的第3题.学集体订正时,可以让学生说一下理由.
3.做练习五的第4题.
活动六:质疑总结
通过对倒数的学习,你都有哪些收获?
《倒数的认识》教案优秀3
教学目的:
(1)理解倒数的意义,掌握求倒数的方法。
(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
教学重点:
理解倒数的意义和怎样求倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数
知识点:倒数的意义、导数的求法
教学过程:
一、导入
1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?
2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!
二、新授
1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。
3、迅速地算出这两个数的乘积,比比看谁算的快!
4、讨论:通过刚才的计算你发现了什么?
5、交流讨论结果,老师板书。(乘积是1两个数)
6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。
追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。
如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)
(2)说说看,刚才这几组数为什么互为倒数
7、出示例题:写出和的倒数。
8、学生讨论倒数的写法,然后再写出这两个分数的倒数(两名学生板演)
(1)说说你是怎样想的
(2)注意倒数的'写法,部分学生会用“等号”表示
(3)小结出求一个倒数的方法。
有没有补充?你是怎么想的?
讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。
(4)板书,生齐读。
9、口答出和6的倒数
10、完成书上的练一练
三、练习
1、练习六第一题(口答并用今天所学的知识,用因为所以说几句话)
第三题
2、综合练习。
的倒数是()。和()互为倒数。
()的倒数是5。()和互为倒数。
1的倒数是()。()没有倒数。
3、那你能写出2、0.8的倒数吗?
生思考,说一说,并说出自己是如何想的?
小结:求带分数的倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。
4、练习六第4题。
先找出每组数的倒数,再看看你能发现什么?
(1)每个人在书上先写出各数的倒数;
(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?
全班交流,看看你们能发现什么?
5、练习六第5题
6、判断
1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)
2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)
3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)
4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)
5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)
四、总结
本节课你有什么收获?
《倒数的认识》教案优秀4
课题:倒数的认识
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
二、新知探索:
研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
学生自主举例,推敲方法:
师:下面,请大家各自举例加以说明。
学生先独立思考,再交流。
(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c、以“带分数”为例;带分数的倒数是真分数。)
(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以“整数”为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的'方法也融入其中。
讨论“0”、“1”的情况:
1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)
总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
练习六5(判断)
补充判断:
a、a是自然数,a的倒数是1/a。
《倒数的认识》教案优秀5
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:
理解倒数的含义,掌握求倒数的方法。
教学过程:
(一)导入
1、找找下面文字的构成规律
呆---杏土---干吞---吴
2、按照上面的规律填数
--()--()--()
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
(二)教学实施
关于倒数同学们想知道些什么呢?学习倒数的'含义
1、观察教材24页的例1,归纳,总结倒数的含义
2、举例验证:4和,7和,3和4乘的积是,所以4和互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是,所以7和互为倒数。
归纳:乘积是1的两个数互为倒数。
3、特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1的倒数就是它本身。
4、学习例2--求倒数的方法
让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法
5、反馈练习
完成教材24页的做一做,完成练习六的第3、4题
(三)课堂练习
找一找下列数中哪两个数互为倒数
210
填空
()的倒数是(),()的倒数是。
10的倒数是(),()没有倒数。
(四)课堂小结
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
《倒数的认识》教案优秀6
教学目标
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
通过合作活动培养学生学会与人合作,愿与人交流的习惯。
通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重难点
教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法
教学过程
一、导入
课件出示:
找规律:指生回答。
找规律,填空,指生回答。
口算,开火车口算。
你能找出乘积是1的两个数吗?指生说。
今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
教学倒数的意义。
学生看书自学,组成研讨小组进行研究,然后向全班汇报。
学生汇报研究的.结果:什么是倒数?生生说,举例说明。
乘积是1的两个数互为倒数。举例说明。课件出示。
观察每一对数字,你发现了什么?
像这样乘积是1的数字有多少对呢?
提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
互为倒数的两个数有什么特点?
像这样的每组数都有什么特点呢?
两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)
教学求倒数的方法。试着写出3/5 、7/2的倒数。
写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
想:写出6的倒数。独立完成。
先把整数看成分母是1的分数,再交换分子和分母的位置。 6= 6/1 1/6
求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。
教学特例,深入理解
1有没有倒数?怎么理解?(因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
课件出示,巩固练习:这些数怎样求倒数呢?
学生独立解答,教师巡视。
汇报时有意识地让学有困难的学生说一说求倒数的方法。
三、巩固应用
课件出示:
练习六第2题:填一填。
找朋友。
写出上面各数的倒数
辨析练习:练习六第3题“判断题”。
我的发现。
马小虎日记,开放性训练。
谜语:
五四三二一
(打一数学名词)
四、总结
你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?
《倒数的认识》教案优秀7
0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
1的倒数是多少?如何求的?
练一练示范写的倒数:的倒数是,明确不能写成=。
学生独立完成,集体核对。
四、巩固练习:
练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
练习十第3题
学生独立填空后集体订正。
练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的`分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
如果钢管的长度都是1米,那么两根钢管用去的一样多;
如果钢管的长度小于1米,那么第一根用去的长度长一些;
如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
《倒数的认识》教案优秀8
教学目标:
1、理解倒数的意义,掌握求倒数的方法。
2、能熟练的求出一个数的倒数。
学情分析:“倒数的认识”是在学生掌握了分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
教学重点:
理解倒数的意义和求一个数的倒数
教学难点:
理解“互为倒数”的意义,明确倒数只是表示两个数间的关系。
教学方法:
三疑三探教学模式
教具准备:
多媒体课件
教学过程:
一、设疑自探
1、创设情境,导入新课
同学们,今天这节课老师给大家带来了几幅漂亮的图片,我们一起来欣赏一下吧!(出示课件图片)
通过欣赏这几幅图片,大家发现了什么?(图片中都有倒影)那么在我们的数学王国里也有这样的现象吗?(出示课件)今天这节课我们就一起来研究数学王国里的这种奇妙现象——倒数。(板书课题:倒数的认识)
2、设疑激趣
看到“倒数”这个数学新名词,大家脑子里产生了哪些问题?请大家来说说你们的问题。大家提的问题都很有价值,都是本节课我们学习的重点内容。
3、出示自探提示,组织学生自学。
针对本节课的学习内容制定了自探提示。(课件出示)
自探提示:
(1)倒数的'意义是什么?
(2)倒数指的是一个数吗?
(3)怎样求一个数的倒数?
(4)是不是每个数都有倒数?
(5)互为倒数的两个数相等吗?
请同学们结合自探提示的这几个问题,自学课本28页的内容,让我们一块到书中去寻找“倒数”的秘密吧!
二、解疑合探
1、检查自探情况,提问学困生,中等生补充,优等生评价,根据反馈情况适时组织小组讨论或同桌讨论。
通过自学提问学生“倒数的意义是什么?”
课件出示:先计算,再观察,看看得数有什么特点?
得出结论:乘积是1的两个数互为倒数。
引导学生理解关键词“乘积是1”“两个数”“互为倒数”。
“乘积是1指的是相乘关系,并且积只能是1、
“两个数”指的是只有两个数。
“互为倒数”说明这两个数的关系是相互依存的,缺一不可,不能孤立的说某一个数是倒数,必须说清一个数是另一个数的倒数
举例说明:因为×= 1,所以和互为倒数,就是的倒数是,的倒数是。
请学生说出互为倒数的任意两个数。并且说说互为倒数的两个数有什么特点?
2、讨论(小组合探):1的倒数是(1)。
0有没有倒数?为什么?(0没有倒数,因为① 0作分母无意义②0×(任何数)≠1)
3、说一说怎样求一个数的倒数?
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置。
三、质疑再探
回顾自探提示的问题是否已解决?关于倒数,你还有什么疑问,提出来大家一起研究。(问题预设:怎样求带分数、小数的倒数?)
通过下面的练习题的解答来总结带分数、小数的倒数如何求倒数。
四、运用拓展
1、完成下面练习题。
2、全课总结
本节课你有什么收获?引导学生对本节课内容进行归纳整理,形成系统的认识。
3、布置作业:
(1)第28页做一做。
(2)练习六1、2、3题。
附:板书设计
倒数的认识
乘积是1的两个数互为倒数
1的倒数是1,0没有倒数
求倒数的方法:分子分母交换位置
《倒数的认识》教案优秀9
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数,《倒数的认识》教学设计与评析。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:倒数的意义与求法。
教学难点:1、0的倒数,小数、带分数倒数的求法。
教学用具:媒体展示台
教学过程:
一、竞赛激趣,揭示课题。
1、谈话:
师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。
(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)
2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。
师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。
追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?
生:可以。能写无数个。(板书:无数)
4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。
[以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]
二、引导质疑,自主探究。
1、引导质疑。
师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、自主探究。
(1)、明确学习方法。
师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。
(2)、学生自学讨论,教师指导。
(3)、组织全班交流。
你现在知道什么是倒数了吗?
怎样求一个数的倒数?
3、质疑:在自学的过程中你们还有什么疑惑的地方吗?
[“以学定教”是教学设计的指导,学生是学习的主人,教师是学生学习活动的组织者、引导者,协作者。在学生的学习过程中:问题应由学生提出,方法应由学生寻找,规律应由学生发现、总结。本环节通过学生“质疑-自学-合作讨论-交流”的流程提高学生发现问题、解决问题的能力以及合作学习的能力。]
三、巩固提高,拓展外延。
师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?
(1)、说出下列各数的倒数,说说你是怎么想的?
8、1、0、
(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)
(2)、课本练习题:第4题。
(3)、判断:
a、9的倒数是。
b、任何真分数的倒数都是假分数。
c、任何假分数的倒数都是真分数。
d、是倒数。
e、1的倒数是1,0的倒数是0。
(4)、开放题:
×()=()×=×()=6×()
你会填吗?你能用今天学到的知识来填吗?
[倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]
四、总结反思,发展能力。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
生:提问-自学讨论-练习
师:你能用“我学会了--”来描述今天学到的知识吗?
生:
[通过引导学生反思学习方法,让学生清楚地意识到自学讨论的.作用。用“我学会了。.。.。”来描述学到的知识,一方面是培养学生经常总结自己学习的习惯,另一方面提高学生的语言表达能力。]
本教学设计的特点:
1、构建“自主-合作探究”的自主学习模式。
新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。
2、“以学定教”重新定位教师与学生角色。
新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。
3、注意学科间的整合。
数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。
《倒数的认识》教案优秀10
教学内容
倒数的认识
教学目标
通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点
教学重点
理解倒数的意义,学会求倒数的方法。
教学难点
发现倒数的一些特征。
教具准备
课件
设计意图
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏土———干吞———吴
按照上面的规律填数
——()——()——()
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
探究讨论,理解倒数的'意义。
课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
你是怎样理解互为倒数的呢?能举例吗?
深化理解。
乘积是1的两个数存在着怎样的倒数关系呢?
互为倒数的两个数有什么特点?
想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
运用概念。
讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2两个分数的倒数。
学生试做讨论后,教师将过程。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
完成教材的“做一做”
完成教材练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识?
《倒数的认识》教案优秀11
一、 教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、 教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、 教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、 教学重点:
理解倒数的意义,掌握求倒数的方法。
五、 教学难点:
熟练写出一个数的倒数。
六、 教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15; 生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:
(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(1)出示卡片 (六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0.4
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2.你是怎么找出7/4的倒数的?
提问: 我们怎样才能很快地找到一个数的倒数?为什么?
4.练习 请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、 巩固练习
(一)填空
1.因为5/3*3/5=1,所以()和()互为();
2.因为15*1/15=1,所以()和()互为 ();
3.4/7与()互为倒数;
4.()的倒数是6/11
5.()的倒数是2
6.1/8的'倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1.得数是1的两个数互为 倒数。()
2.互为倒数的两个数乘积一定是1。()
3. 1的倒数是1,所以0的倒数是0 。()
4.分数的倒数都大于1。()
(四)思考
4/5*()=()*8
四、总结:
今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、 布置作业
简评:
一、自主学习中让学生勇于创新
新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。
《倒数的认识》教案优秀12
教学内容:六年级上册第二单元倒数的认识。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法。
2、提高学生观察、比较、、概括的能力。
3、感悟“变通”的数学思想。
教学重点:倒数的意义与求法。
教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。
教学程序:
一、激趣导入,揭示课题。
师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?
(生:上下两部分调换了位置,变成了另一个字)
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识
二、引导质疑,自主探究。
1、引导质疑。
师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好? 好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。
3、揭示倒数的意义
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数
你认为哪个词非常重要?你是如何理解“互为”的?生回答
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
强调:(1)乘积必须是1。
(2)只能是两个数。
(3)倒数是表示两个数的关系,它不是一个数。
4、小组探究求一个倒数的方法
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100、1、0 1、2、3 0.5、3.4、0.23
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
三、巩固练习,内化提高。
1、判断题。
2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。
师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示结论:所有真分数的倒数都是假分数)
师:第二组(这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(卡片结论:大于1的假分数的倒数都是真分数。)
师:第3组呢?(这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)
师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的`真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
四、总结反思,发展能力。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
师:你能用“我学会了--”来描述今天学到的知识吗?
生:……
五、学科融合
今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?
《倒数的认识》教案优秀13
教学目的:
使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:求一个数的倒数的方法。
教学难点:理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:教学光盘
课前研究:自学课本P50:
什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
出示例7
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1
你能模仿着再举几个例子吗?
学生回答,教师板书。
观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的'倒数时,只要把它的分子、分母调换位置就可以了。
合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×()=1,再得出结果。
《倒数的认识》教案优秀14
教学目标:
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
通过合作活动培养学生学会与人合作,愿与人交流的习惯。
通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
口算:
× × 6× ×40
××3××80
今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
课件出示知识目标:
什么叫倒数?怎样理解“互为”?
怎样求一个数的倒数?
1有倒数吗?是什么?
教学倒数的意义。
学生看书自学,组成研讨小组进行研究,然后向全班汇报。
学生汇报研究的结果:乘积是1的两个数互为倒数。
提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
教学求倒数的方法。
写出的.倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
教学特例,深入理解
1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
同桌互说倒数,教师巡视。
三、当堂测评
练习六第2题:
辨析练习:练习六第3题“判断题”。
开放性训练。
3/5×()=()×4/7=()×5=1/3×()=1
四、课堂总结
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
教学后记
第十一、十二课时:整理和复习
《倒数的认识》教案优秀15
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的`意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是……真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论0、1的情况:
1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
【《倒数的认识》教案优秀】相关文章:
倒数的认识优秀教学设计04-02
倒数认识教学设计07-16
倒数的认识教学设计01-04
倒数的认识优秀教学设计范文(精选8篇)10-26
《倒数的认识》教学设计优秀(通用14篇)06-14
倒数的认识优秀教学设计(通用8篇)10-26
倒数的认识教学设计20篇08-30
《倒数的认识》教学设计范文(精选6篇)10-25