【精华】小学数学教案范文锦集五篇
作为一名教师,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的小学数学教案5篇,仅供参考,大家一起来看看吧。
小学数学教案 篇1
一、说教材
1、教材分析 拔萝卜——两位数加减两位数(不进位、不退位)是义务教育课程标准实验教科书数学(北师大版)一年级下册第3单元《加与减(一)》中的内容。 本课时的内容是在整十数加减法、两位数加减一位数(不进位、不退位)的基础上安排的。教材先提供了小兔子拔萝卜的情境,从中引出问题:“一共拔了多少个萝卜?”让学生自己列式计算,并说出计算过程。教材中提供了四种计算方法(并非让学生全部掌握,学生还可以有别的方法)。在学了加法计算之后,让学生试着计算:“小白兔比小黑兔少拔了多少个萝卜?”以促使学生从加法计算迁移到减法计算上去。这是新教材与旧教材的不同。
教学目标:
(1)自己探索100以内两位数加减两位数(不进位、不退位)的计算方法。
(2)从加法计算方法迁移得出减法的计算方法,培养初步的知识迁移能力。
教学重点:
发展应用意识,运用所学知识解决两位数加减两位数(不进位,不退位)的计算方法。
教学难点:
学生学会在理解图意的基础上,自己提出数学问题,引导学生尝试用自己的方法进行计算,体现算法多样化的思想,进一步体会加减法的意义。
二、说教学法
学生已有整十数加减整十数、两位数加减一位数(不进位、不退位)的知识作为基础,有一小部分学生在上学前已对竖式有简单的了解。对于看图编故事和从图中提出问题,前面的学习中已有过练习。这些都是本节课学生学习的前提条件。 在本节课中,力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲自体验知识的形成过程,促进学生思维的发展。
三、说教学流程
(一)创设情境。
师:同学们,老师这儿有一幅画,是一个好听的故事,大家想听吗?
(二)讨论。
师:从图中你知道了什么?
教研组材料 公开课说课稿 20xx.3.30 2 生:我知道了黑兔拔得多,白兔拔得少。 师:你还能提出哪些问题? 生:我想知道,两只兔一共拔了多少个萝卜? 生:黑兔比白兔多拔了多少个? 生:白兔比黑兔少拔了多少个? (教师将生的问题板书在黑板上。)
(三)探索加法的计算方法。
师:同学们提出了好多问题,有的咱们已经解决了,这儿还有三个问题(指黑板),咱们来解决“一共拔了多少个萝卜”的问题。怎样列算式呢? 生:36+23=?(有的学生已报出结果。) 师:算出结果的同学想一想自己是怎么算出来的,其他同学自己想办法计算 36 +23 的结果,可以用小棒、算盘、练习本等。 (学生动手探究,教师巡视,对有困难的学生引导、帮助。) 学生汇报自己的计算方法: 生A:我是用摆小棒的方法计算。我在左边摆3捆零6根,就是36,在右边摆2捆零3根,就是23。然后数一数,一共5捆零9根,就知道36+23=59。 生B:我是拨计数器算的'。我先在十位上拨了3个珠子,在个位拨6个珠子是36,再在十位上拨2个珠子,在个位上拨3个珠子,一看是59。 生C:我是用口算得出的,6+3=9,30+20=50,50+9=59。 生D:我也是用口算得出的,36+3=39,39+20=59。 生E:我也是用口算得出的,36+20=56,56+3=59。 生F:我是用竖式计算的(边列竖式边说),先写一个加数36,再写第二个加数23,并把加号写在第二个加数的左边,写好后在下面画一条横线,再计算:30+20=50,6+3=9,答案也是59。 师:很好。在列竖式时一定要注意,两个加数中个位的两个数上下要对齐,十位上的两个数也要对齐。然后再计算:个位上6+3=9,把9也写在个位上,和上面对齐,十位上3个10加2个10是5个10,5写在十位上,和上面对齐。 师:以上四种方法:摆小棒、拨计数器、口算、列竖式,你认为哪种最简单? 生A:我认为列竖式简单。 生B:我认为口算简单。
(四)探究类推减法的计算方法。
师:刚才大家通过自己的努力解决了一个问题,后面还有两个问题,同学们可以以小组
教研组材料 公开课说课稿 20xx.3.30 3 为单位选择其中的一个问题,四个人共同去解决。 学生以小组为单位,选择并讨论解决问题。 小组长汇报: 组A:我们解决第一个问题,兔哥哥比兔妹妹多拔了多少个萝卜,我们的算式是36-23=13。 师:你们是怎样计算36-23的? 组A:我们用口算,6-3=3,30-20=10,10+3=13。 组B:我们列竖式(边写边说),先写第一个数36,再写第二个数23,6-3=3,3-2=1。 师:是3-2=1吗? 生:是3个10减2个10等于1个10。 组3:我们解决第二个问题,算式也是36-23=13。也用口算,30-20=10,6-3=3,10+3=13。
(五)总结
师:在这节课中,你们认为自己表现得如何? 生A:我认为自己表现得很好。 师:哪一点表现得很好? 生A:老师提的问题我认真思考,还积极发言了,而且我讲的故事很好。 生B:我认为自己表现得还可以,我也积极发言了。 生C:我认为自己表现得不好,我把36+23算错了。 师:同学们也可以评价一下别人。 学生踊跃发言,都很注意发现其他学生的长处。 师:在这节课中,有好多同学都表现得好,他们认真思考,积极发言,而且把小组活动组织得很好。大部分同学也都能好好地去学习,个别同学没积极思考,老师希望你下一节课有所进步。
小学数学教案 篇2
认识形体
长方体、正方体的面、棱、顶点,结构与特征。(例 1、例2)
长方体、正方体表面的展开图(例3)
表面积
表面积的意义和计算方法(例4)
表面积的实际应用(例5)
体积
体积的意义、容积的意义(例6、例7)
常用的体积单位和容积单位(例8)
长方体、正方体的体积计算公式(例9、例10)
体积单位的进率及简单换算(例11)
整理与练习实践活动
第一, 有一条合理的编排线索。先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。建立了体积概念和体积单位概念,才能探索体积计算公式。把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。教学长方体和正方体,历来都很重视发展空间观念。本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。过去教材里讲长方体的表面展开是为了教学它的表面积及计算,现在教学表面的展开,更是为了发展空间的观念。《数学课程标准(实验稿)》把几何体与其展开图之间的转化作为空间观念的一个内容,把能进行这些转化作为空间观念的一种表现。教材一方面把正方体、长方体纸盒展开,在展开图里找到原来形体的每个面;另一方面又提供一些图形,把它们折叠围成立体,感受图形的各部分在立体上的位置,让学生的空间观念在这些活动中实实在在地获得发展。另外,设计的五道思考题和实践活动《表面积的变化》,加大了空间想像的力度,都以发展空间观念为主要目的。
第三,注重知识的实际应用。本单元教学的知识与学生的日常生活有密切的联系。在现实的问题情境中能发现和认识数学知识,习得的概念和方法能应用于解决实际问题。教材尽力从数学的角度提出问题、解释问题,引导学生综合应用数学知识、技能解决问题,处处能看到数学与生活的有机结合。如认识长方体、正方体的特征以后,收集这样的实物并量出长、宽、高或棱长;在做纸盒和鱼缸的实际问题中教学表面积的计算和应用;用初步建立的体积(容积)概念比较物体的大小;用学到的体积单位计量常见物体的体积、常见容器的容量;灵活应用体积公式计算沙坑里沙的厚度、塑胶跑道的用料问题
一、 观察、整理认识长方体、正方体的特征。
例1教学长方体和正方体的特征,把主要精力放在长方体上。这是由于长方体比正方体复杂,发现长方体的特征需要开展许多活动。而且,研究长方体的学习活动经验可以迁移到认识正方体中去。例题呈现一些图片,如长方体或正方体包装盒、家用电器等,在图片的启发下说说生活中哪些物体的形状是长方体,哪些物体的形状是正方体。在现实的情境中引出本单元的研究对象。
观察实物,整理特点是认识长方体、正方体的主要教学活动。例1的教学过程安排成三步。
1. 观察物体,理解直观图,认识面、棱和顶点。
三年级(上册)通过观察长方体和正方体,已经知道在不同位置看到的面的个数不同。有时只能看到一个面,有时能同时看到两个面,最多能同时看到三个面。例题以这些经验为教学起点,在观察物体的基础上理解长方体、正方体的直观图,认识它们的面、棱和顶点。
把立体的样子画在纸上,从长方体、正方体实物到它们的直观图,是空间观念的一次发展。在实物上只能看到一部分面,在直观图上实线围出了能看到的面,用虚线勾画不能直接看到的面。把立体与其直观图有机联系,感受直观图真实表达了立体的形状,并在看到直观图时,能想到相应的立体,这是空间观念的表现。直观图是教学难点,从有利于学生理解出发,可以分两步出现。先画出能够看到的面,再勾出不能看到的面。
面、棱和顶点是长方体、正方体结构的'要素,是三个最基本的概念,还是研究长方体、正方体特征的出发点。按面棱顶点的次序教学,有利于建构它们的意义。物体有面是已有认识,只要在立体上摸摸面,在直观图上指出面,就体会了长方体、正方体的面,不必作过多的解释。两个面相交的线叫做棱,是对棱的数学解释。要通过观察和在实物上的演示,直观感受两个面相交的含义,清楚地看到相交处是线。要强调这条线不能叫做长方体、正方体的边,应称作棱。三条棱相交的点叫做顶点,要通过在实物上摸一摸、在直观图上指一指等活动,看到每一个顶点都是三条棱的交点,这是认识顶点的关键。
2. 观察物体,由量到质认识长方体的特征。
第11页认识长方体的特征,鼓励主动探索,重视合作交流,遵循逐渐认识的规律。首先数出长方体、正方体有几个面、几条棱和几个顶点,并把结果填在教材预设的表格里,从量的角度认识长方体、正方体的特征。填表能起三个作用:一是及时记录获得的信息,防止流失,有利于特征的整体性;二是通过写出有关的数量,加深印象,有利于记忆;三是显示出长方体、正方体都有6个面、12条棱和8个顶点,有利于感受长方体与正方体的联系。接着深入研究长方体的特征,教材提示了可进行的活动是看、量、比;研究的对象是长方体面的形状与大小,棱的长度与相互关系;研究的目的是发现长方体的特征。在学生充分活动的基础上组织交流,概括出长方体的特征。教学时要注意四点:① 学生对长方体特征的认识很难一步到位,总是由表及里、由浅入深地发展的。认识长方体的特征既让学生自主探索,又要教师引导点拨。如发现6个面都是长方形比较容易,而相对的面完全相同往往需要教师引导学生去关注、去比较。至于长方体的3组棱及每组4条棱长度相等,可能更需要教师给予点拨。再如学生的发现往往是局部的、点滴的,表达往往是不严密的,这就需要教师汇集生成的资源,提升语言水平,帮助抽象概括。② 例题里观察的是一般的长方体,目的是紧扣长方体的本质特征教学。把较特殊的长方体安排在练习三第1、2题里出现,学生不会因为它有两个面是正方形,对它是长方体产生怀疑。这样安排也符合正方体从属于长方体的关系。③ 学生间的学习方式总是多样的,部分学生喜欢探索发现,也有部分学生需要有意义的接受,合作交流能满足学生的不同需要。要让独立探索有困难的学生共享成果,在听懂同伴发言的基础上,给他们亲自验证、亲身感受的机会。④ 教学长、宽、高是继续认识长方体,要在顶点与棱的概念的基础上进行。必须清楚相交于一个顶点的三条棱分别是长方体三组棱中的一条,把它们分别叫做长方体的长、宽、高。不但要在立体上指出,还要在直观图上看出。如果适量地把长方体横放、竖放、侧放,根据不同的摆放位置,让学生说说它的长、宽、高,可以防止死记硬背,发展空间观念。
3. 观察物体,独立发现正方体的特征。
由于正方体比长方体简单,又有认识长方体特征的经验,所以正方体特征的教学会比较轻松。教材先提出正方体的面和棱各有什么特征这个研究课题,让学生在独立探索以后,小组交流自己的发现。尽管正方体的特征比较简单、容易得出,教学也不能过于仓促。仍要让学生指指相对的面、相对的棱,说说得出结论的过程与方法,想想6个面是完全相同的正方形与12条棱长度相等之间有什么必然联系使形象思维与抽象思维,以及数学活动的能力都得到发展。
二、 展、折,想像认识长方体、正方体的展开图。
第12页教学正方体、长方体的展开图,这部分内容的教育价值和教学要求,在前面介绍本单元教材编排特点时已经阐述,不再重复。这里主要分析教材,提出教学建议。
1. 初步知道展开图的含义,加强对正方体的认识。
例3先教学正方体的展开图,原因仍然是正方体的特征比较简单。例题详细展示了把正方体纸盒展开的步骤,用红线标出每步剪开的棱,最后还把剪开后的纸盒摊平。引导学生首次经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。教学这道例题要注意反思,即得到正方体展开图以后,要回忆是怎样展开的,思考为什么展开图里有6个同样的正方形,正方形的边与正方体的棱有什么联系通过反思,既加强对展开图的认识,又加强对正方体特征的认识,更通过立体与展开图关系的思辨发展空间观念。
除了依照例题设计的剪法展开,还可以沿其他的棱剪。大象卡通提出的要求,是让学生再次进行展开正方体的活动,体会沿着不同位置的棱剪,得到的展开图形状不同。但是,展开图由6个相同的正方形组成,每个正方形的边都是正方体的棱是相同的。从而理解正方体展开图既有多样性,又有确定性。多样性是剪法不同的结果,确定性是正方体的特点决定的。
2. 自主研究长方体的展开图,加强对长方体的认识。
长方体的展开图安排在试一试里让学生剪纸盒得到,学习正方体展开图的经验和体会能支持他们主动地操作、交流。沿着哪几条棱剪?在教材里没有规定,可以自主选择。因此,得到的展开图也是多样的,在每个展开图里都可以看到6个长方形,从而体验了长方体展开图形状的多样性和组成的确定性。卡通提出的从展开图中找到3组相对的面是富有思维含量的问题,能引发学生细致地研究展开图,并把展开图与立体联系起来思考。要鼓励学生进行展开图长方体展开图长方体的折、展活动,反复地看展开图里的每一个长方形,想它在长方体的位置;看长方体的面,想它在展开图里的位置。在体验立体与展开图相互转化的过程中发展空间观念。
另外,在展开图上想长方体的长、宽、高,并把长、宽、高转换成展开图中各个长方形的长与宽,也有益于空间观念的发展,还能为表面积的教学作铺垫。
3. 判断哪些图形折叠后能围成正方体或长方体,加强对体的认识。
第12页练一练第2题提供的每个图形都由6个相同的正方形组成,判断这些图形中哪些折叠后能围成正方体。第14页第5题的每个图形都由6个长方形组成,判断哪几个图形能折叠后围成长方体。其中部分图形围不成正方体或长方体的原因是,折叠的时候部分正方形或长方形重叠,构不成有6个面的立体。因此,这两道题一方面加强了展开图与立体的转化,另一方面加强了对长方体、正方体都有6个面的认识。
学生进行这些判断会有困难,为此提出两点教学建议: 第一,在例3和试一试里要把沿不同的棱剪纸盒得到的各个展开图充分进行展示和交流。先认识图中所示的标准状态的展开图,再体会展开图还有其他形状,并在各个展开图上指出立体的相对的面。第二,允许学生灵活地先想后围或者先围后想。如果看到的图形是标准的或接近标准状态的,可以先判断它能否围成立体,想想围成的立体是什么样子,然后折叠验证判断和想像。如果看到的图形不是标准状态的,能不能围成立体难以判断,可以先动手操作,从中体会为什么能围成或围不成立体。
三、 分解,组合有意义地建构表面积的知识。
教学表面积知识编排的两道例题都是关于长方体的,正方体的表面积通过试一试在练习中教学,这是因为长方体表面积的概念和计算方法能迁移到正方体上去。表面积的教学分两步进行,先是例4与试一试,把表面积的意义和算法结合在一起。然后是例5,着重于表面积知识的应用,灵活地解决与长方体、正方体表面积有关的实际问题。
1. 联系已有知识经验,探索表面积的知识。
例4的问题情境是做一个长方体纸盒至少要用多少硬纸板,在掌握长方体特征的基础上,学生会想到这个问题与长方体各个面的面积有关,并出现不同的计算方法。猴子卡通和兔子卡通的算法是比较典型的两种方法,它们有相同的思路:求出纸盒各个面面积的总和,但算法不同: 把3组相对的面的面积相加,把每组相对面中各个面的面积和乘2。前一种算法得益于第13页第3题的铺垫,后一种算法受到了(长+宽)2=长方形面积的启发。两种算法都是计算长方体表面积的较好方法,相同的思路和乘法分配律沟通了两种算法的内在联系,教材鼓励学生选用自己喜欢的方法算出结果。
学生求至少要用多少硬纸板所想到的各种算法,都应用了分解组合的思想方法,即先把一个较复杂的新颖问题分解成若干个简单问题,再把这些简单问题组合起来。反思并体验这种思想方法,就能很好地理解表面积的意义,也不需要机械地记忆表面积的算法。学生对正方体有完全相同的6个正方形已经有深刻的认识,试一试求做正方体纸盒至少用多少硬纸板,一般都会把一面的面积乘6。得出的长方体(或正方体)6个面的总面积,叫做它的表面积,既形成了表面积的概念,也总结了计算表面积的方法。
2. 联系生活经验,灵活解决实际问题。
例5制作上面没有玻璃的鱼缸,利用长方体表面积的知识解决实际问题。通过实物图帮助理解这个实际问题的特点,让学生明白所用玻璃的面积是长方体5个面的面积和,从而主动想出算法。小鸟卡通和兔子卡通仍然应用了分解组合的思想方法,把实际问题抽象成求前、后、左、右和下面5个面的面积和的数学问题,或者抽象成从表面积(6个面的总面积)里去掉一个面的面积的数学问题。两条思路各有特点,前一条突出的是空间想像,要找准并正确计算有关的各个面的面积。后一条的思路负荷轻、思考难度小,能减少错误的发生。还有其他方法吗主要反映在按小鸟卡通的思路,可以列出5个面的面积连加的式子,也可以列出前、后两个面的面积加左、右两个面的面积,再加下面面积的式子。要注意的是,这道例题鼓励解决问题的策略与方法多样,并不要求学生能够一题多解。教材仍然让学生选择一种算法。
练一练和练习四里还有只计算长方体的前、后、左、右4个面面积和的实际问题,缺少左侧面的长方体的问题等。教材为部分习题配了示意图,便于学生直观感受实际问题是求哪些面的面积之和。部分习题没有配置实物图,可以在现实的生活空间里思考。如粉刷平顶教室的顶面和四周墙壁,只要看看自己的教室,就能把题目里的长、宽、高落到实处。又如台阶的问题,可以找个台阶看看,理解什么是它的占地面积以及地砖铺在哪些面上。计算长方体火柴盒的内盒和外盒所有的材料,综合应用了长方体特征和表面积知识,再次体验实际问题是多变的,要灵活应用知识才能正确解答。
四、 实验、领悟初步建立体积概念。
例6和例7分别教学体积的意义和容积的意义,容积的意义要建立在体积概念上,因而例6是这部分教材的重点。学生形成体积概念也是教学的难点,这两道例题的教学只能初步感受体积的含义,在后面教学常用的体积单位,以及长方体、正方体的体积计算时,还要通过测量和描述,进一步理解体积的意义。
1. 在有限的空间里领悟体积。
物体所占空间的大小叫做体积。空间物体占有空间所占空间的大小都是体积概念的内涵,是建立体积概念必须解决的子概念。例6利用杯子的空间,把感悟体积的过程设计成三步。第一步是初步体会空间和物体占空间。两个同样的玻璃杯,左边的盛满水,右边的放一个桃,把左边杯里的水倒向右杯,会剩下一些水。杯中有一部分空间被桃占去了这句话解释了现象、回答了原因,引出了空间这个词,让学生在现实的背景下感知空间的含义。这一步要把生活常识引向数学认识,看着放了桃的杯子,仔细领悟杯中有一部分空间被桃占去了的意思,是十分重要的教学活动。若有需要,还可以在一只透明空杯的上口放一本书,让学生看着杯子的里面体会杯子的空间。再把桃放入杯里,仍然用书盖住上口,看着杯里的桃,体会它占有杯子的一部分空间。第二步是感受不同的物体占的空间有大、有小。两个同样的杯子,一个杯里放1个桃,另一个杯里放1个荔枝,桃比荔枝大,分别往两个杯里倒水,显然前一个杯里可以倒入的水比后一个杯少。让学生回答为什么,不能简单地用桃大荔枝小来解释。要像兔子卡通那样想和说,用桃占的空间大,荔枝占的空间小来回答问题。理解桃大是指它占的空间大,荔枝小是指它占的空间小,从而获得不同物体占的空间大小不同的体验。第三步继续体会每个物体都占有一定的空间。观察图片里的番茄、荔枝和桃,先思考哪一个占的空间大,再想想这三个水果分别放在三个杯里,往杯中倒水,哪个杯里水占的空间大。这是两个连续的关于物体占有空间的问题,可从前一问题的答案推理得出后一问题的答案。由于苹果占的空间大,杯子盛水的空间就小;番茄占的空间小,杯子盛水的空间就大,这就感受了每个物体都占有一定大小的空间,由此得出体积的意义:物体所占空间的大小叫做物体的体积。
举例比比两个物体体积的大小是为了巩固体积概念,应该对学生提出两点要求:一是用好体积这个词,二是联系实物解释什么是它的体积。如电冰箱的体积是它占有空间的大小,电冰箱的体积比电视机的体积大。
练习五第1、3题进一步领悟体积的意义。把同样的盒装饼干堆成3堆,各堆的形状不同、体积相同。理解体积是物体占有空间的大小,与物体的形状无关。用小正方体摆出较大的正方体或长方体,理解体积大的物体占的空间大,体积相等的物体占的空间大小相等。
2. 从体积引出容积,初步建立容积概念。
容积与体积是两个既有联系,又有区别的概念,教学容积能进一步理解体积。
例7教学容积的意义,以体积概念为生长点。图画里有两盒书,一盒是《四大名著》,另一盒是《成语故事》。先在直观情境里比较哪盒书的体积大些,再从左边盒子里书的体积大引出左边盒子的容积大。书的体积是旧知,盒的容积是新知,教学既要以旧引新,也要体现容积与体积的不同意义。教材中比较书的体积,是看着两盒书进行的。而容积是指着两个书盒子讲的,从而凸现容积的属性,以及它与体积的区别。
为了有利于建立容积概念,教学时应该补充一些实例,让学生懂得容器,体会每个容器能容纳的体积是有限的、确定的。在充分感知的基础上,得出容器所能容纳物体的体积,叫做这个容器的容积。
试一试的教学要注意两点: 一是让学生解释玻璃杯容积的含义,理解每个杯的容积是指它能容纳多少水;二是通过实验比出哪个杯的容积大。如在一个杯里装满水,再往另一个杯里倒,看能不能装满另一个杯子,会不会有剩下的水。学生应该是实验设计、操作和结论得出的主体。
练一练第2题两个盒子里装的杯子的数量不同,练习五第4题两个盒子外面同样大,里面装的仪器数量不等,这些直观情境能帮助学生正确理解容积的意义,体会容器的体积与容积是不同的概念。
五、 认识,应用初步掌握常用的体积单位。
本单元教学的体积单位有立方厘米、立方分米、立方米。有了体积单位,就能测量、表达物体的体积,也能进一步体会体积的意义。
1. 认识体积单位包括两方面内容。
例8教学常用的体积单位,首先是测量、计量体积需要体积单位,然后是各个体积单位的具体含义。
观察图中的长方体和正方体,很难直接判断哪一个体积大。把它们切成同样大的正方体,就能比出体积的大小。这段教材让学生明白,有了体积单位就能准确计量物体的体积。图中的长方体是9个小正方体那么大,大正方体是8个小正方体那么大,长方体的体积比正方体大。还要让学生感受用于测量物体体积的单位,应该是确定的小正方体,由此导出常用的三个体积单位。把长方体和正方体切成同样的小正方体,最好是学生自主想到的方法。如果有困难,也可以看书或由教师告诉他们。但是,必须理解这个方法,体会其合理性,激发学习体积单位的愿望。
教学体积单位的具体含义,要准确地表达1立方厘米、1立方分米、1立方米各是多大的正方体。教材在文字描述这些体积单位的意义的同时,还选择一些辅助方法,让学生体会体积单位。棱长1厘米的正方体,体积是1立方厘米。教材里画出了1立方厘米的示意图,配合语言描述,让学生了解1立方厘米。受版面限制,教材里画出1立方分米、1立方米的直观图有困难。因此,在1立方分米的示意图的旁边,画一个体积接近1立方分米的粉笔盒,利用熟悉的物体,感知1立方分米是多大。用3根1米长的木条,在墙角搭一个1立方米的空间,在现实情境中体会1立方米。
寻找体积接近1立方厘米、1立方分米的物体,是带着体积单位的初步表象观察周围的事物,进一步体验这些单位。教材举的手指头的体积大约1立方厘米这个实例,能引起观察手指头的兴趣,加强1立方厘米的表象,再通过自主寻找实例,对1立方厘米的认识就深刻了。
2. 掌握体积单位有两方面的要求。
掌握体积单位,要能应用体积单位计量物体的体积。在这部分教材里,一是说出由1立方厘米小正方体摆成的物体的体积,二是为常见的物体选择合适的体积单位。
第21页说出用4个或6个棱长1厘米的正方体摆成的长方体的体积,第一次量化描述物体的体积。两个长方体的结构都很直观,分别说出它们的体积非常容易。教学不能满足于答案,要让学生说出怎样想的,进一步理解体积的意义和体积单位的用途。第24页第6题里的三个物体都是1立方厘米的正方体摆成的,其中两个物体的结构不是很直观。说出它们的体积,要数出各是几个正方体摆成的,尤其是想到那些不能直接看到的正方体,能发展空间观念。第8题根据三视图摆出物体,说出体积。摆出物体是解决问题的关键,是发展空间观念的机会。这个物体不复杂,多数学生能够摆出来。教学时不必补充这样的练习,更不要增加摆出物体的难度。
第24页第7题为物体选择合适的体积单位。能不能填出合适的单位,一般决定于三个因素:一是对物体的熟悉程度,二是具有体积单位的表象,三是能开展正确而有效的思考。如学生都熟悉西瓜,知道1个西瓜大致是多大,如果体积是8立方厘米或8立方米,显然都不符合实际。反之,为不熟悉的物体选择体积单位,只能是脱离实际地乱猜,这是毫无意义的。教材里的橡皮、集装箱、水桶等都是多数学生比较熟悉的物体。教学时如果补充类似的练习,一定要注意这点。
3. 进一步教学升与毫升。
四年级(下册)曾经教学升与毫升,初步知道它们都是计量液体的单位,也是容器的容量单位。对1升、1毫升液体是多少有了初步的认识。现在教学升和毫升,主要有两个内容: 第一,升和毫升都是体积单位,用于计量液体的体积,也用于计量容器的容积。把升与毫升纳入体积单位的范畴,建立新的知识结构,是已有认识的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升与1毫升的实际大小,使原有认识更清晰、更牢固。
六、 操作,发现探索长方体、正方体的体积公式。
例9和例10教学长方体的体积计算公式,并推导出正方体体积计算公式。在初步掌握两个体积公式以后,还把它们统一起来。
1. 让学生探索求积公式。
长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。况且,记忆和照公式列式计算的思维含量较低。得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。
例9和例10是两个层次的活动,不仅操作内容、要求有区别,而且思维程度有差异。例9用1立方厘米的正方体摆出4个不同的长方体,从已有的知识和能力开始教学新知识。没有规定长方体的大小,学生可以按自己的意愿去摆,既调动积极性,又为合作学习营造了氛围。在教材预设的表格里填写每个长方体的长、宽、高,所用正方体个数以及体积,可以获得两点感受:一是沿着长、宽、高各摆几个正方体,长方体的长、宽、高就分别是几厘米;二是长方体里有多少个正方体,体积就是多少立方厘米,体积应该与长、宽、高有关。这两点感受能使学生明白:探索长方体的体积计算公式,要研究体积与长、宽、高的关系。教学例9不要急于得出体积公式,而要在摆长方体与填表的基础上,着力引导学生获得上述两点感受,形成继续研究的心向。即使有学生从例9已经看出了体积公式,也要引导他们通过例10进一步验证公式,理解体积与长、宽、高之间的必然联系,感受数学的严谨及结论的确定性。
例10根据图示的长、宽、高,用1立方厘米的正方体摆出三个长方体。活动的本质是用体积单位测量物体的体积。对学习的要求是先想怎样摆、需要几个正方体,再按想法摆,验证想的是否可行、是否正确。三个长方体是精心设计的。左起第一个长方体的宽与高都是1厘米,只要把4个正方体摆成一行,能够体会长方体长的数量与沿着长摆的体积单位个数之间有必然联系。第二个长方体的高1厘米,只要把正方体摆成一层。体会长方体宽的数量是几,沿着宽应该摆出几行体积单位。而长与宽的乘积,就是一层里体积单位的个数。第三个长方体高2厘米,要把正方体摆成2层,体会长方体高的数量与摆的体积单位的层数是一致的。教材在各个长方体里预设的教学内涵,规划了各次实物操作时的思维重点,有助于学生逐渐建构数学认识。摆各个长方体获得的体会,就是对长方体的体积与它的长、宽、高关系的理解。教材让学生说说在两道例题中的发现,是引导他们回顾、反思例题的学习,进一步清楚这些体会,并把这些体会有条理地组织起来,得出长方体的体积公式。
抓住正方体12条棱长度相等的特点,能从长方体的体积公式推导出正方体的体积公式。教材要求学生主动经历推导过程,在独立思考之后小组交流。推导的思维方法是多样的,从正方体具有长方体的所有特征出发,演绎推理能完成推导,从再现测量体积活动出发,
类比推理能完成推导: 用体积单位测量正方体的体积,每行摆的个数、摆的行数、摆的层数都与正方体的棱长相等。因此,正方体的体积=棱长棱长棱长。
写正方体体积的字母公式时,根据字母表示数的书写规则,如果把乘号简写为,那么V=aaa;如果乘号省去不写,要写成V=a3。一般采用后一种写法,a3以及它表示的意思都是新知识。第26页练一练第2题,算几个整数或小数的立方的得数,巩固对立方的认识。解决正方体体积的实际问题,经常会列出和计算这样的算式。其中13、103和0.13要提醒学生特别注意,防止算错。
2. 深入理解体积公式。
长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第27页教学这个内容,分三步进行: 第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到底面一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫做它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长宽,正方体的底面积=棱长棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在长方体的体积=长宽高里,如果把长宽看成先算底面积,那么体积公式可以演变成底面积高。在正方体的体积=棱长棱长棱长里,如果把棱长棱长看作先算底面积,那么体积公式也演变成底面积高。由于长方体、正方体的体积公式都能演变成底面积高,因而获得了统一。
把长方体和正方体的体积公式统一成底面积高,有两点教学意义: 第一是深入理解原有的两个体积公式。长、宽、高或棱长都是立体的棱的长度,决定立体的大小。长宽或棱长棱长得到长方体或正方体的底面积,底面积高得到的是体积。这里面蕴含了长度、面积、体积之间的联系。第二是重组知识结构。把两个体积公式合并成一个公式,其本身是一次认知简化。而且,底面积高还是计算所有直柱体体积的方法。无论底面是直线图形的柱体,还是曲线图形的柱体,体积公式都是V=Sh。前一点意义,在现在的教学中就能实现;后一点意义,在以后的教学中会逐渐体现出来。
练习六第5题已知一根长方体木料的长与横截面的边长,横截面是第一次出现的概念,教材利用示意图帮助学生理解横截面的含义。先算出横截面的面积,再算木料的体积,有两点意图:一是通过计算横截面的面积,进一步认识这个面;二是体会长方体、正方体的体积公式还能演变成长横截面面积、横截面面积棱长,从而对体积公式有更充实、更丰富的体验。
七、 计算,迁移理解体积单位的进率。
在初步掌握长方体、正方体的体积公式以后,教学体积单位的进率,采用让学生经过计算发现和理解的教学方法。教材第30~32页,先教学相邻体积单位间的进率,再教学简单的换算。
1. 求两个同样大小的正方体的体积,发现和理解进率。
例11的图里有两个正方体,一个棱长1分米,另一个棱长10厘米。从1分米=10厘米,知道两个正方体的棱长相等,进而判断它们的体积相等。这两个正方体的体积分别是1立方分米与1000立方厘米,从它们体积相等,推理得出1立方分米=1000立方厘米,这就是立方分米与立方厘米的进率。
用同样的方法,通过棱长1米和棱长10分米的正方体,可以得到立方米和立方分米间的进率。
在教学进率的过程中,作出两个正方体体积相等的判断是关键。因为1立方分米=1000立方厘米、1立方米=1000立方分米,首先表达的是两个棱长相等的正方体的体积相等,然后才本质地表达出相邻两个体积单位的进率。后者是这部分教材的重点所在。
练习七第1题的表格里已经填了米、分米、厘米三个长度单位以及一个面积单位与一个体积单位,要求学生继续写出其他面积单位和体积单位,还要写出表格里相邻的长度、面积、体积单位的进率。这道题对长度、面积、体积三类计量单位从名称和进率两个方面进行初步的整理。填表能引起学生对这些单位概念的回忆,如边长1米的正方形面积是1平方米,棱长1米的正方体体积是1立方米。从而体验米、平方米、立方米是不同的概念,也是有对应关系的单位。有了这些体验,在测量或计量长度、面积、体积时,就能正确应用单位名称。通过填表能发现规律,如米、分米、厘米这三个长度单位,相邻单位间的进率是10;平方米、平方分米、平方厘米这三个面积单位,相邻单位间的进率是100(1010);立方米、立方分米、立方厘米这三个体积单位,相邻单位间的进率是1000(101010)。理解这些规律,有助于记忆进率。
2. 应用进率进行简单的换算。
对使用不同单位的体积进行换算,是应用进率的活动。本单元里的单位换算是比较简单的,只在两个相邻单位间进行,而且都是单名数的换算。
练一练是体积单位的换算,先把较大单位的数量换算成较小单位的数量,再把较小单位的数量换算成较大单位的数量。类似的这些换算在长度单位、面积单位、质量单位里都进行过,学生有换算的经验,知道可以利用小数点向右或向左移动位置的办法解决。完成这里的练一练,可以把已有经验迁移过来,着重思考把小数点向哪边移动几位,并对这样做的原因作出解释。
练习七第2题把面积单位的换算与体积单位的换算对比着进行,目的是体会它们在换算时的相同与不同。无论哪类计量单位,只要是较大单位的数量换算成较小单位,都把小数点向右移动;只要是较小单位的数量换算成较大单位,都把小数点向左移动,这是规律,是共性。而小数点移动的位数是由进率决定的,进率分别是10、100、1000,小数点分别移动一位、两位、三位。获得这些体会的价值,已经远远超出知识与技能的范畴,更是数学思考、解决问题方面的发展。第4题里升与毫升的换算,四年级(下册)教材里曾经进行过。现在进行这些换算,不限于整数范围内实施,对问题及其解决方法的理解也比过去深刻。把升为单位的数量改写成立方分米为单位,把毫升为单位的数量改写成立方厘米为单位,能加强1升等于1立方分米、1毫升等于1立方厘米的认识,更好地把体积单位组织起来,便于记忆和应用。
八、 拼拼,想想体验表面积的变化。
实践活动《表面积的变化》专题研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,发展空间观念。
拼拼算算这个栏目,先研究用正方体拼的情况,再研究用长方体拼的情况,后一类情况比前一类复杂。研究正方体拼成长方体,从两个正方体开始。选用体积1立方厘米的正方体,它的每个面的面积都是1平方厘米,有利于体会到表面积的变化。
用两个相同的正方体拼出长方体,可以上、下两个面拼,也可以左、右两个面拼,还可以前、后两个面拼。从现象看,似乎拼法不同。其实,各种拼法没有实质性的差别。首先是拼成的长方体的体积是2个正方体体积的和,每个正方体的体积是1立方厘米,长方体的体积是2立方厘米。其次是每种拼法都减少原来的2个面,这是正方体拼成长方体时发生的变化,也是这次实践活动的研究内容。在两个正方体拼成长方体的图示中,可以体会减少的2个面分别在两个正方体上。拼的时候,这两个面相重叠。
用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,表面积比原来减少几个正方形面的面积?教材让学生边操作、边观察,边思考、边填表。发现的规律要帮助学生分两个层次归纳和交流:一是关于拼的步骤。2个正方体一步就能拼成长方体,3个正方体要分两步拼,4个正方体要分三步拼二是关于减少的面积。2个正方体拼,比原来减少2个(一对)正方形面的面积;3个正方体拼,比原来减少4个(两对)正方形面的面积;4个正方体拼,比原来减少6个(三对)正方形面的面积
用两个相同的长方体拼,情况比较复杂。由于长方体三组面的形状、大小不同,只有把完全相同的两个面重叠,才能拼出较大的长方体。因此,一般有三种不同的拼法。教材让学生通过操作,了解三种拼法。再看着各种拼法的示意图,思考每种拼法减少的面积。在体会三种拼法减少的面积不同之后,找出拼成的大长方体中,哪个表面积最大,哪个最小。
第37页的示意图中,左边拼法的两个长方体把54的面重叠,拼成的大长方体的表面积比原来减少两个54;中间拼法的两个长方体把53的面重叠,表面积减少2个53;右边拼法的表面积减少2个43。这些都是学生在操作与看图中能够理解的,也是交流的主要内容。指出表面积最大和最小的大长方体,要进行这样的推理:拼的时候减少的面积最少,拼成的大长方体的表面积最大。反之,减少的面积最多,拼成的大长方体的表面积最小。只要教师稍加引领或点拨,学生都能像这样想。而且计算三个大长方体的表面积比原来减少多少,都有捷径可走。
拼拼说说栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。仔细地体会拼的活动和研究教材里的示意图,左图可看作有7次正方体的两两相拼(如图),每次减少面积2平方厘米,大长方体的表面积比原来减少7个2平方厘米。右图中可看作有5次正方体的两两相拼(如图),大长方体的表面积比原来减少5个2平方厘米。所以,右边的长方体表面积比左边长方体大4平方厘米。
为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
小学数学教案 篇3
教学目标
1、通过练习活动,使学生进一步认识面积的含义,体会面积单位的大小,能进行简单的面积换算。
2、能正确地应用长方形、正方形的面积公式解决一些简单的实际问题。
教学重难点
通过练习,进一步体会面积的含义,巩固面积单位间的换算。
教学过程
一、组织教学
二、新授
1、选适当的单位填空。
(1)一根跳绳长约2()。
(2)一间卧室的面积约为22()。
(3)一张报纸的面积约为44()。
(4)教室的门高约为2()。
2、填空:
7平方米=()平方分米600平方厘米=()平方分米500公顷=()平方千米
3公顷=()平方米4米=()厘米15平方米2平方分米=()平方分米
3、边长为12厘米的正方形纸,可以剪成面积是4厘米的小正方形多少个?
4、一根铁丝正好能围成边厂为4分米的正方形,如果用这根铁丝围成长方形,它的面积有多大?
5、调查我国的陆地土地面积约多少平方千米。你能从地图上知道我国哪个省或自治区的.面积最大吗?
6、右图是铺了正方形地砖的客厅地面。
(1)这个客厅共铺了多少块地砖?
(2)如果每块地砖的边长5分米,这个客厅的面积有多少平方米?
7、(1)绿化面积是多少?
(2)每块水泥砖是边长为1米的正方形,铺路共需多少块水泥砖?
8、某足球场的长约是100米,宽约是50米,足球场的面积约是多少?
9、小调查
调查自己家房屋、院子或学校操场的面积,并在全班交流。
长㎝
宽㎝
面积㎝
10、数学游戏
在下面的方格纸上画出面积是16cm的图形,你能画出几
种?它们的周长相等吗?
(在这个活动中,学生复习了面积与周长的含义;能够画出多种形状不同的图形,充分发挥想象力;体验面积相同的图形的周长可能相等,也可能不等的数学事实。)
三、小结
教学后记:学生基本能正确运用公式,正确计算长(正)方形的面积,但对一些稍微有变化的题目,就感觉措手不及,说明空间观念比较差。
小学数学教案 篇4
教学目标
1.使学生掌握解答应用题的一般步骤,会分析应用题的数量关系,能正确解答三步计算的应用题.
2.提高学生分析、解答应用题的能力.
3.初步培养学生认真审题和检验的习惯.
教学重点
学会用综合算式解答三步计算的应用题.
教学难点
分析应用题的数量关系.
教学过程
一、谈话引入
教师:我们解答过许多应用题,有一步计算的、也有两步计算的.今天我们继续学习解答较复杂的应用题,并归纳出解答应用题的步骤和检验的方法.
教师板书:应用题
二、讲授新课
(一)教学例1
例1.一个服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的要3天做完,平均每天要做多少套?
1.学生分组讨论思考题
(1)找出已知条件和问题
(2)怎样用线段图表示题意?如何分析数量关系?
(3)怎样分步列式?怎样列综合算式?
(4)怎样验证是否正确?
2.汇报讨论结果
(1)课件演示:一般应用题1(出示摘录的已知条件和问题,及线段图)
(2)提问:要求剩下的`平均每天做多少套,要先求出什么?后3天做了多少套怎么求呢?已经做的套数怎么求?
(3)学生列式
分步:755=375(套)
660-375=285(套)
2853=95(套)
综合:(660-755)3
=(660-375)3
= 2853
= 95(套)
(4)教师小结检验过程.
方法一:按照原来的题意,依次检验每一步列式和计算是不是对.
方法二:把最后结果当做已知数,按照题意倒着一步一步地计算,看结果是不是符合原来的一个已知条件.
3.规纳概括
(1)课件演示:一般应用题2
(2)教师提问:这四步你感觉你应把主要精力放在哪一步上?哪一步最重要?
(3)小结:解答应用题时,我们应把主要精力放在理解题意上,因为解题思路是根据题意确定的.第二步是最重要的,它决定着思路是否正确.
三、巩固练习
(一)四年级和五年级要给500棵树浇水,四年级每天浇50棵,浇了4天;剩下的由五年级来浇,浇了5天.五年级每天浇多少棵?
(二)李小胜拿3.2元钱买文具,买了4支铅笔,每支0.6元.剩下的钱买图画纸,每张0.2元,可以买几张?
(三)新丰农具厂赶制540件农具,前10天平均每天制32件,余下的要在5天完成,平均每天要制多少件?
(四)一个装订小组要装订2640本书,3小时装订了240本.照这样计算,剩下的书还需要多少小时能装订完?
1.学生独立完成.
2.教师出示不同算法,请同学讨论是否正确.
四、质疑调节
1.今天的学习你有什么收获?
2.审题除了以上方法外,还有什么方法检验呢?解答应用题为什么要检验?(讨论)
五、课后作业
(一)学校买来280千克大米,计划吃7天,实际每天比计划少吃5千克,这批大米实际吃了多少天?
(二)甲乙两地相距300千米,一辆大车从甲地到乙地计划行6小时,实际每小时比原计划多行10千米,实际几小时到达?
(三)装订小组计划装订一批书,每小时装订180本,10小时可以装订完.如果每小时比原计划多装订20本,几小时可以装订完?
小学数学教案 篇5
一、情境铺垫,导入新课
师:小朋友们,我们来猜个谜好吗?
生(齐):好。
师:有一种球,它不用手玩,用脚踢,能猜出它是什么球吗?
生(齐):足球。
师:今天老师就带你们去看一场足球比赛。(出示挂图)
(简评:以小朋友感兴趣的猜谜活动导入新课,即消除了学生的紧张心理,把学生的心由激烈的课前玩耍状态收回到课堂,又使他们自然而然地投入到即将开始的新的认知活动之中。同学们的学习兴趣被提了起来,形成了一个良好的教学开端。)
二、进行新课
1、教学例课
(让生仔细观察挂图)
师:小朋友们,从这幅图中你看到了什么?
生:小朋友在踢球。
师:一共有多少人呢?
生(齐):10人。
师:你是怎么知道的?
生1:我是一个一个数出来的。
生2:挂图左边有6人,右边有4人,合起来是10人。
生3:穿橙色衣服的有6人,绿色衣服的有4人,合起来是10人。
师:你们可以根据我们以前学过的8、9的解题规律写出关于10的四道算式吗?
生:6+4=10 , 4+6=10 ,10-4=6,10-6=4。
(简评:充分利用学生的有意注意,直观入手,借助形象的挂图使学生投入到积极思维之中,主动参与教学活动,用以前所学的8、9的加、减算理很顺利地得出关于10的加、减的四道算式,更进一步感受加、减算式间的联系,体会解决实际问题的过程。培养学生的知识迁移能力和审美情趣。)
师:除了这个问题,你还能提出哪些问题?
生1:一个戴帽子,9个没戴帽子,一共有多少个小朋友?
得到:1+9=10,9+1=10。
生2:有10个小朋友, 6个小朋友在左边,有多少个小朋友在右边?得到:10-6=4。
生3:10个小朋友,有4个小朋友穿绿色衣服,其余小朋友穿橙色衣服,穿橙色衣服的小朋友有多少人?
(简评:由浅入深,凭借挂图为学生提供开放的教学内容、开放的教学空间,创设一种民主、平等、和谐、自由的教学环境,变权威教学为共同探索,和学生一起观察,一起讨论,教学相长,最大限度地提高学生学习活动的自由度,引导学生发现新问题[着装异同、是否戴帽]、提出新问题,并解决新问题。培养学生的观察能力、语言表达能力和探索新知意识,让每个学生的创造个性都得到充分自由的发展。)
师:小朋友们真能干,从踢足球上我们就可以解决这么多问题,那你能帮书上这个小女孩吗?
生(齐):能。
2、教学试一试。
师:请同学们打开书P55面,桌子上是这个小女孩抛花片得到的结果,你能根据她抛的结果(7个正面带花的,3个反面),列出4道算式吗?
生:3+7=10,10-3=7,7+3=10,10-7=3。
师:真棒!表扬他。(生齐鼓掌)(师奖励星图片)
师:既然小朋友能帮助书上小女孩解决好这一题,老师想你们自己动手抛也会做的很好,是不是?(让学生抛花片,写四道算式,在组内互相交流)
师:有谁来说一说你抛花片的`情况,你列的算式是怎样的?
生1:带花的一面有8个,不带花一面有2个。算式是:
2+8=10,8+2=10,10-2=8,10-8=2。
生2:带花的一面有7个,不带花一面有3个。算式是:
3+7=10,7+3=10,10-3=7,10-7=3。
生n:带花的一面有5个,不带花一面也有5个。算式是:
5+5=10,10-5=5。
师:你为什么只写出两道算式呢?
生n:(沉默)
师:哪位同学能够帮他回答这个问题呢?
生:因为两个加数都是5,调换它们的位置,还是一样,所以只能写出两道算式。
师:其他小朋友同意他的观点吗?
生(齐):同意。
师:老师也同意他的看法。
(简评:程老师根据活泼好动是小孩子的天性这一心理特点,让小朋友用看得见、摸得着、直观性强、感兴趣的抛花片来激发他们的好奇心,启迪他们的求知欲。依据抛花片的结果列算式,培养学生动手操作能力和逻辑思维能力,根据同学们抛的不同结果,列出不同的算式,有助于新授知识的伸展和学生思维发展。提问时注意了学生有条理地一组一组地说,筛选出特殊情况5和5、10和0,鼓励学生自己发现问题、分析问题、解决问题。体现新课程标准中教师始终是课堂教学的组织者、引导者、参与者、合作者的教育理念。)
三、巩固练习
师:我们来做个游戏,好吗?
生(齐):好。
师:我出1。(拍手2次)
生:我出9,1和9合成10。
师:今天老师还请来了两个小客人,它们就是小老鼠和大象(出现戴头饰的小朋友),它们也来做数学题,(老鼠出8,大象出2,说出两道和是10的加法算式,2+8=10,8+2=10。)老师想请同桌的小朋友和老鼠、大象比一比,你们还可以出哪两张数字卡片使它们合起来等于10呢?(同桌互相出卡片,说得数是10的算式)
(简评:当戴着老鼠和大象头饰的小朋友出现时,同学们学习的热情更加高涨。程老师让同学们合作出卡片,合成10,培养了学生的合作精神和探究问题的意识,感知和是10的算式的五彩缤纷。从课堂热烈的场面,能发现同学们的学习是快乐的、有成效的。)
2、帮小白兔顺利回家
师:现在小白兔遇到了一个难题,它不能顺利回家了,(出示挂图),你能帮帮小白兔,让它顺利回家吗?
(师说算式,生口算得数)
(简评:本来很枯燥的计算变成了帮小白兔回家,小朋友们都变成了乐于助人的小公民,这样把思想品德教育融入到数学教学中,潜移默化地培养了小学生良好的思想道德意识。)
3、P56第3题
师:既然小朋友能这么快帮小白兔回到家,相信下面的题目也不会难倒你。(师以卡片形式出示口算题,一张接一张出现,生按坐的位置不同,开火车口答。)
4、师:下面老师想请小朋友也来帮帮小蜜蜂,它找不到它们要采的花蜜了。记住这里每只小蜜蜂都有它要采的花朵,老师相信聪明细心的你,一定能很快地帮助每只小蜜蜂完成任务的。(用线连一连)
(简评:这两题进一步巩固学生所学知识,使学生由初步掌握列式计算提升到熟练口算,体现知识掌握的循序渐进性特点。从学生那自信的回答中,可以感受到学生的活力和产生的成功感。利用开火车这种游戏也可以培养学生的竞争意识。从答对让别的同学点头,答错遥头也体现了程老师教学方法的灵活性。)
5、师:小朋友们的表现的真棒!很快帮助小蜜蜂找到了要采的花蜜。现在小松鼠和小猴也排着整齐的队伍来到了我们的身边,它们也给小朋友们出了数学题,我们就一起来看看吧!(投影出示题目)
师:数一数它们各有多少?谁能用算式来比较它们的多少呢?
生:小松鼠有8只,小猴有6只,小松鼠比小猴多2只,小猴比小松鼠少2只。算式:8-6=2。
师:我们一起来说一遍,好不好?(生齐答)
师:那小鸡和小鸭怎么比较呢?
(让生独立完成。)
(简评:使学生初步感知多几、少几的含义,引导学生理解每次是谁和谁比,初步理解结果的不同,对结果的表达也不同,渗透生活中处处有数学的教育理念,也为以后学习比多、比少应用题埋下了伏笔。)
6、师:下面还有一道难度稍大的题目,你们怕不怕?
生(齐):(不怕!)
师:那我们就一起来看一看。
生:好。
师:你能说出一些和是10的加法算式和一些10减几的减法算式吗?
生:
(简评:注重养成学生独立思考、多思善想的个性品质,培养学生的发散思维能力,发展空间理念。既和前面的踢足球、抛花片、帮小白兔回家相呼应,又由形象到抽象地总结了本节课所学的知识。)
四、小结。
五、布置作业:课本P56第3题。
【小学数学教案】相关文章:
小学数学教案经典05-11
小学数学教案(精选)08-04
【精选】小学数学教案08-12
小学数学教案08-02
(推荐)小学数学教案07-05
小学数学教案[集合]07-23
小学数学教案【必备】08-22
有关小学数学教案02-07
小学数学教案(优选)08-30
(精品)小学数学教案09-02