教案

分数乘分数六上教案

时间:2024-09-03 09:10:14 晶敏 教案 我要投稿
  • 相关推荐

分数乘分数六上教案(通用11篇)

  作为一名教师,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?以下是小编整理的分数乘分数六上教案,希望能够帮助到大家。

分数乘分数六上教案(通用11篇)

  分数乘分数六上教案 1

  教学内容:

  苏教版教材第十册

  教学目标:

  1、使学生正确理解分数的意义,理解单位“1”的意义;

  2、培养学生的观察能力;

  3、培养学生的抽象概括能力。

  教学过程:

  一、引入

  1、米尺是用来干什么的?老师用米尺量自己的身高,看清楚,老师的身高能用整米数表示吗?

  2、再举个例子,一个苹果平均分给三个小朋友,每个小朋友得到的个数,能不能用整米数表示吗?

  3、在日常生活中,人们进行测量和计算的时候往往得不到整数的结果,这就需要引进一种新的数——分数。

  今天,就在原来学习分数的基础上学习分数的意义。(板书课题)

  二、动手感知

  (一)1、四年级已经初步认识了分数,你能说出几个分数吗?

  老师已经给你们准备了好多材料,这是一个饼,一个长方形,一段绳子,你能不能从这里面选出一样,表示出1/2,会吗?(学生动手操作)

  2、汇报

  (1)你是怎么分的?怎么得到1/2这个分数的?1/2是多大呢?

  师强调:其中的一份就是这个饼(长方形、绳子)的1/2。

  (2)继续汇报

  (3)除了这三种材料,你还能另选一种表示出1/2吗?

  3、好,刚才有的同学分的是绳子,它们有什么共同点吗?为什么都得到1/2呢?

  师:都是平均分成两份,这样的一份就是原来的哪个东西的`?

  有没有不同的地方?

  生:有的分的是,有的分的是,有的分的是,平均分的对象不同。

  (二)1、老师还为你们准备了另外一些学习材料,这是什么?你能表示出4只桃子的1/2吗?还大家准备了小正方体、水彩笔,请你从这些东西中任选一样表示出它的1/2,小组内一起完成。

  2、汇报

  (1)先请分苹果的小组来汇报,你们是怎么分的,怎么得到1/2这个分数的?

  师:4个苹果,当然先要看成一个整体,平均分成几份?一份几个苹果?一份就是这个苹果的。

  (2)分小正方体的小组汇报。

  个小正方体是这个小正方体的1/2。

  (3)分水彩笔

  12枝,把它看成一个整体,要得到1/2,也就是把它平均分成份,每一份是枝,一份就是这12枝的。

  (三)小结

  通过刚才的平均分,我们都能得到1/2,为什么?它们有什么共同点吗?(揭示:平均分)

  师:都是把这些物体平均分成两份,都表示这样的,所以用1/2来表示。不同点是什么?

  (四)1、师:有的是把一个物体、一个图形、一个计量单位平均分,也可以把许多物体组成的一个整体平均分,得到1/2这个分数,假如老师要你得到3/4这个分数,你们会不会?请你们从材料中随便选一样物体也行,选许多物体组成的一个整体也行,分一分,表示出3/4。

  2、汇报

  (1)我们先请分一样物体的来发言,你是怎么得到3/4这个分数的?

  (2)再请把许多物体看成一个整体得到3/4的来说一说。

  3、刚才我们通过平均分一个物体和许多物体组成的一个整体得到了3/4,为什么它们都能得到3/4呢?有什么共同点?

  (五)1/(1)、刚才我们平均分了许多物体,你能给这些物体分分类吗?分成哪几类?

  (2)一张饼、一个长方形、一根绳子等我们可以用自然数“1”来表示,像4个苹果、8个小正方体、一盒水彩笔,由许多物体组成的一个整体,我们也能用自然数“1”来表示,当然要加双引号,我们通常把它们叫做单位“1”。(板书

  (3)单位”1“可以表示一张饼、一个长方形、一根绳子等一个物体,也可以表示由一些物体组成的一个整体,比如说:。

  2、你联系实际想想看,你能举出一些单位“1”的例子来吗?

  (六)1、下面呢,老师不要你具体动手去分了,你脑子里想一个分数,然后确定一个单位”“”“1

  比如说:老师想一个分数9/10,确定一个单位“1”,把1米长的线段看作单位“1”,我把它平均分成10份,表示这样的9份,就是9/10,你们会吗?说给同桌听听看。

  2、汇报

  你想的是哪个分数?把什么看成单位“1”?

  3、总结

  (1)刚才我们通过平均分一个物体,一个计量单位,或者说一些物体组成的一个整体,也就是把单位“1”平均分,得到了好多分数,那么平均分的份数呢?可以是份、份等等,你能不能用一个词语来概括一下,也就是把单位“1”平均分成。

  (2)你怎么知道若干份这个词的?若干份是什么意思?

  表示这样的一份就是单位“1”的几分之几,表示这样的几份就是单位“1”的几分之几。

  (3)什么样的数叫做分数呢?(同桌相互说)

  老师请一个同学来说一下,你是怎样来定义这个概念的?

  (4)看书81页学生读分数的意义,教师板书

  这段话里,你认为哪几个词比较重要?

  三、1、做练习汇报

  2、做一些操作性的小练习

  信封里有一些小纸片,有红的,有白的,红色的小纸片几张?白色的呢?下面请同学们根据老师的指令正确的操作和表示,行吗?

  (1)拿出六张纸片,要求红的是所有纸片饿1/6,你是怎么拿的?

  (2)拿出六张纸片,要求横的是所有纸片的2/3

  (3)任意拿出纸片,只要表示3/5这个分数。

  还有没有跟他们都不一样的?

  (4)拿出三张纸片,要求它是所有纸片的1/4。

  (四)全课总结

  通过这节课,你学到了哪些知识?

  分数乘分数六上教案 2

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪??

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1。师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2。师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的.3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)

  (板书)

  (5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

  分数乘分数六上教案 3

  教学目标:

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的'结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习:

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较1/2的3/4和4/5占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘分数六上教案 4

  教学目标 :

  1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的`乘法意义及算理。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1. (课件出示一个正方形)这个正方形我们可以用数字1表示。现在涂色部分是它的几分之几? ( )

  2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

  3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

  二、合作探究(小组合作,解决问题)

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4. 进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

  把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(25)份,取其中的一份,就是 公顷。

  分数乘分数六上教案 5

  教学目的与要求

  1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

  2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  教学过程

  一、创设情境

  以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课

  二、组织探究

  1、教学例4 出现教材中的图形

  然后问:画斜线部分是1/2 的几分之几?又是这个长方形的几分之几?

  由此明确:1/2 的1/4 是1/8 ,1/2 的3/4 是3/8

  启发学生进一步思考:求1/2 的1/4 是多少,可以怎样列式?

  求1/2 的3/4 呢?

  师问:你能列算式并看图填写出书中的结果吗?

  打开书p45完成

  提示:根据填的结果各自想想怎样计算分数与分数相乘?

  学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母

  2、教学例5

  (1)让学生说说23 ×15 和23 ×45 分别表示23 的几分之几?

  你能用前面得出的结论计算这两道题吗?

  学生试做

  订正完后问:你能用什么方法来验证你的计算结果呢?

  (2)验证比较

  让学生在自己准备的长方形纸上先涂色表示23

  再画斜线表示23 的15 和23 的45

  学生动手操作,教师巡视对学困生进行指导

  看看操作的结果与你计算的结果是否一致?

  学生观察比较

  3、归纳总结

  比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?

  得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  三、练习

  1、完成p46的试一试

  提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算

  通过交流进一步明确计算分数与分数相乘的计算方法

  四、分数与分数相乘的计算方法的推广

  同学们,下面着几道题你回计算吗?

  出示:2/11 ×3=

  4×5/6 =

  请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算

  讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

  学生分组讨论

  明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘

  (2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便

  (3)也可以整数与分数直接进行约分后再计算。这样更简便

  教师进行示范如p46

  2、练习

  完成p46的'练一练

  引导学生用直接约分的方法进行计算

  五、综合练习

  1、做练习九的第1题

  先在图中画一画再列式计算

  2、做练习九的第3题

  说出错的原因

  3、做练习九的第4题

  看谁算的最快

  六、全课小结

  通过这节课的学习,你有什么收获?还有什么疑惑?

  七、作业

  练习九的第2、5题

  教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。

  分数乘分数六上教案 6

  【教学目标】

  1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

  2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

  3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

  【教学重难点】

  理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。

  【教学准备】多媒体课件

  【教学过程】

  一、创设情境,自主探索

  谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,咱们都来帮帮他,好吗?(课件出示信息)

  谈话:从图中你收集到了哪些数学信息?

  谈话:你能根据这组信息,提出一个数学问题吗?全班交流,

  板书学生所提有价值问题:

  做小鸟风筝的尾巴,一共需要多少米布条?(板书)

  (2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)

  【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。

  二、算法交流,分析比较

  (一)探索分数乘整数的意义。

  1.独立思考,自主探索

  谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?

  学生可能会出现以下算式:(根据学生的回答课件随机出示)

  xxxxx

  追问:你为什么这样列式?

  相加的和,也可以用乘法计算?

  明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

  谈话:比较

  这组乘法算式,跟我们以前学的有什么不同?

  导出课题:分数乘整数(板书)

  【设计意图】分数乘整数的'意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。

  (二)探索分数乘整数的计算方法。

  1.独立计算感知算法。

  谈话:你能尝试计算

  1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。

  2. 算法交流,分析比较

  谈话:你能交流一下你的算法吗?学生可能会出现以下方法:

  (根据学生回答课件随机出示)

  三、沟通优化,促进发展。

  1.(1)算法的初步优化

  谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。

  学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)

  谈话:比较一下这两种方法,你有什么感受?

  小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。

  (2) 探索计算中的简便方法

  谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。

  分数乘分数六上教案 7

  一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。

  二、口算,感受分数乘整数的含义

  1、读出算式,并口算出结果:

  1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)

  2、感受分数乘整数的意义

  30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。

  三、尝试计算,归纳方法

  1、尝试计算。

  让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。

  2、自己选择练习

  自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。

  3、概括分数成整数的计算方法

  让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。

  总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

  同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:

  一、给孩子鼓劲儿,让孩子看到希望

  告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!

  二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭

  我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。

  三、理解分数乘法含义、尝试计算

  从分数加法的'口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。

  同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。

  分数乘分数六上教案 8

  教材分析

  《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

  学情分析

  本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

  教学目标

  知识与能力:

  在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  过程与方法:

  通过观察比较,指导学生通过体验,归纳分数乘整数的'计算法则,培养学生的抽象概括能力。

  情感态度与价值观:

  引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点和难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  分数乘分数六上教案 9

  教学内容:

  教科书第44—45页

  教学目标:

  1、结合生活经验和直观图示,理解一个数乘分数的意义,探索分数乘分数的计算方法。

  2、通过操作、观察,培养学生初步分析、推理的能力。

  3、经历分数乘分数的意义和计算方法的探索过程,渗透数形结合思想,获得成功的学习体验。

  教学重点:

  一个数乘分数的意义和计算方法

  教学难点:

  理解分数乘分数计算的算理

  教学过程:

  一、创设情境,提出问题:

  师:在学校举行的“小手艺展示”活动中,王芳同学获得了“编织能手”的称号。她每小时能织1/4米长的围巾,根据这一信息,你能提出什么数学问题?(板书:每小时能织1/4米)

  学生自主提出问题,师根据本节课所需选择性地板书。

  2小时能织多少米?

  1/2小时能织多少米?

  2/3小时能织多少米?

  [学生如果提出的时间较大时教师就顺势改成2小时;如果学生提出其它问题,教师就说老师来提一个,将问题引过来]

  师:要求2小时、1/2小时、2/3小时织多少米?该怎样形式?为什么?

  引导学生根据“工作效率×工作时间=工作总量”的关系列式。

  [学生可能列出:1/4×2、1/4×1/2、1/4×2/3]

  师:同学们真棒,不但自己提出了问题,还会根据“每小时织的米数×织的时间=织的总米数”这个数量关系来列式,这节课我们就先来研究这三道题。

  二、探究研讨,学习新知:

  教学分数乘分数的意义。

  1、教学1/4×2:

  (1)师:先来看1/4×2,它表示什么意思?

  生可能说:

  1/4的2倍是多少?

  2个1/4是多少?

  (2)师:求2小时能织多少米,就是求1/4米的2倍是多少?你能通过画图或用纸条表示出它的意思吗?

  学生操作,抽生前台展示。

  [学生如果不能准确地表示,教师再引导说明。]

  [师:怎样表示1/4米呢?假设用这个纸条表示1米,1/4米就是把它平均分成4份,取其中的1份,用阴影表示,这就是1小时织的,2小时织的呢?让学生表示两份。]

  2、教学1/4×1/2:

  (1)师:1/4×1/2表示什么意思,谁有想法?

  (2)学生交流:

  [可能出现:

  生1:1/4的1/2倍是多少?师解释:我们通常所说的倍数一般都是2倍、3倍……而1/2比1小,不够1倍,所以我们一般不这么说。

  生2:1/2个1/4是多少?师引导:1/2比1小,不够1个一个呀!]

  师:这两位同学非常棒,都是运用迁移的方法根据1/4×2的意义来说的.,那么到底表示什么意思,我们可以画图或折纸来分析一下,同学们自己动手试一试行吗?

  (3)学生动手操作。

  (4)学生交流。

  [对于出现的几种情况,只要解释正确教师就预以肯定。]

  师:刚才同学们解释的意思大家都明白,但如果不解释,是不是就有点看不明白了,关键是大家没有首先清楚地表示出1/4米,我们一起来画一画。

  师再示范一次操作的过程。

  3、教学1/4×2/3:

  (1)1/4×2/3表示什么意思?

  (2)生交流:表示1/4的2/3是多少?师:是不是这样,我们再画图来验证一下。

  (3)学生交流。

  4、小结:

  刚才我们研究的这两道题就是我们今天要研究的内容:一个数乘分数。通过刚才的操作,谁来说说一个数乘分数的意义是什么?

  学生交流。师生概括:一个数乘分数,可以看作是求这数的几分之几是多少。

  [板书:求这个数的几分之几是多少?]

  5、练习:

  下面的算式表示什么?(算式在大屏幕上出现)

  1/3×1/3,1/4×2/5,3/4×1/5,3/4×2/9

  探索分数乘分数的计算方法。

  1、师:同学们对意义理解的很好,那么1/4×1/2和1/4×2/3的结果是多少?

  学生交流。

  师:想一想,积的分子、分母与两个因数的分子、分母有什么关系?在小组内说一说。

  学生交流:得出:两个分数相乘,积的分子是两个因数分子相乘的积,分母是两个因数的分母相乘的积。

  [学生交流时,师结合示意图,详细讲解分数乘分数积的分子和分母乘出的过程。]

  2、师:应用刚才的发现,计算1/4×1/2,1/4×2/3。

  学生独立计算。

  订正时注意让学生了解有不同的约分方法,可让学生自己选择。

  强调:能约分的要先约分,再计算。

  总结分数乘分数的计算方法。

  师:王芳8/15小时织了多少米?怎样列式?这个算式表示什么意义?请大家独立计算。

  分数乘分数六上教案 10

  教学内容:冀教版《数学》五年级下册第46、47页。

  教学目标:

  1、经历动手操作、画图表示、推导、归纳等探索分数乘分数计算方法的过程。

  2、掌握分数乘分数的计算方法,会正确进行分数乘分数的计算。

  3、体验分数乘分数计算方法的探索性,感受画图分析问题、研究问题的直观性。

  教学准备:教学课件、长方形彩纸。

  一、折纸

  教师说明折纸要求,让学生动手操作,折出这张纸的二分之一和四分之一。

  课件演示折纸过程,帮助学生理解四分之一是二分之一的二分之一。

  二、种地问题

  1、课件出示问题,根据题意出示图示。

  2、提出问题(1),继续出示图,使学生明白求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。列出算式,并结合图得出:

  1/31/2=(11)/(32)=1/6.

  3、提出问题(2),方法和过程同问题(1)。

  三、总结计算方法

  师生共同总结出计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  完成试一试的四道题。

  四、课堂练习

  1、练一练第1题。

  2、练一练第2题。

  3、练一练第3题。

  4、练一练第4题。

  5、练一练第5题。

  由折纸引入学习活动,既调动学生学习的兴趣,又是分数乘法问题的准备。

  结合课件直观演示,帮助学生弄清题意。

  结合课件演示,使学生理解题意,明白求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。为总结计算方法作铺垫。

  先让学生观察两个算式,自己总结方法,教师指导归纳,培养学生的概括、归纳能力。

  让学生独立尝试计算。再交流。

  分数乘分数问题的抽象描述,培养学生逻辑思维能力。

  其中的指谁的?理解这个问题,学生就知道了是求1/4的2/5是多少。

  通过面积计算,巩固分数乘法计算方法。

  关注比较方法,进一步理解分数乘法的抽象描述。

  在已有知识基础上,学生独立完成。

  师:请同学们拿出一张长方形纸,对折一次,再对折,折出的纸片面积是原来长方形纸面积的几分之几?

  生:折出的纸片面积是原来长方形纸面积的1/4.

  师:折出的.纸片面积是原来长方形纸的一半的几分之几?

  生:折出的纸片面积是原来长方形纸的一半的1/2.

  师:也就是说四分之一是二分之一的二分之一。(利用课件演示说明)

  师边口述题意边出示课件。

  师边口述题目边演示课件。

  师:求西红柿地占整块地的几分之几就是求什么?怎样计算?

  生:求西红柿地占整块地的几分之几就是求1/3的1/2是多少,用乘法计算。列式是1/31/2=(11)/(32)=1/6.

  师:观察两道题的计算过程,分数乘分数,我们是怎么计算的?

  生概括归纳。

  师:大家用你们自己归纳的方法试着计算试一试的题目。

  交流时说说计算方法和过程。

  师:说说怎样列式?

  学生独立计算,交流算法。

  师:丫丫吃了其中的2/5,是谁的2/5?

  理解后独立完成,交流时说说列式的想法和计算过程。

  理解题意,独立完成。

  学生独立完成,交流时,注意学生比较的方法。对于好的方法给予表扬。并归纳总结比较方法。

  集体订正。注意得数后面要有单位名称。

  分数乘分数六上教案 11

  教学目标:

  1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。

  2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。

  3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。

  教学重点:

  掌握分数乘小数的计算方法。

  教学难点:

  提高学生根据实际情况灵活选择合适的计算方法的能力。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1.计算下面各题

  2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)

  3.导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。

  【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】

  二、自主学习(自主学习,生成问题)

  (一)阅读理解

  1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)

  (1)松鼠欢欢的尾巴有多长?

  (2)松鼠乐乐的'尾巴有多长?

  【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】

  1.自主解答

  松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书:,学生尝试计算,教师巡视,请不同做法的学生板演。)

  2.交流探讨,体会不同算法

  先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。

  (1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。

  (dm)

  (2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。

  2.1×=2.1×0.75=1.575(dm)

  【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】

  3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。

  【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】

  三、合作探究(小组合作,解决问题)

  1.自主解答

  刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)

  2.交流反馈

  (1)可以把2.4化成分数,再跟相乘,结果是。

  (dm)

  (2)可以把化成小数0.75,再跟2.4相乘,结果是1.8。

  2.4×=2.4×0.75=1.8(dm)

  3.自学课本

  (1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)

  (2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)

  小数2.4和分数的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。

  4.对比思考。

  为什么可以这样约分?你觉得这样约分计算简便吗?

  【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】

  四、回顾反思

  1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?

  2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。

  【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】

  五、拓展总结(应用拓展,盘点收获)

  (一)对比练习

  1.学生独立完成。

  2.反馈:计算时你更喜欢哪种算法?

  【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】

  (二)基本练习

  教材第8页做一做

  1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。

  2.反馈交流时提问:哪几题可以先约分再计算?可以把分数化成小数计算吗?

  【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】

  (三)提高练习

  教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的。我国人均淡水资源量是多少万立方米?

  1.学生独立完成,一生板演。

  2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的水资源知识,进行节约用水教育。

  (四)拓展练习(多余条件)(机动)

  教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的。如果有2.5kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?

  1.学生独立完成。

  2.交流汇报。

  3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。

  【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】

  (五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?

  【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】

【分数乘分数六上教案】相关文章:

分数乘分数的教案04-13

分数乘分数教学设计12-20

数学教案之分数乘整数04-03

冀教版《分数乘分数》教学设计参考11-20

关于《分数乘分数》教学设计范文11篇08-30

人教版六上数学《分数乘法之分数混合运算和简便计算》优秀教案11-02

分数乘整数教学反思总结03-29

分数乘整数教学设计(精选11篇)04-12

分数与除法教案10-26