教案

初一数学教案最新

时间:2024-06-18 12:35:17 教案 我要投稿
  • 相关推荐

初一数学教案最新

  作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?以下是小编精心整理的初一数学教案最新,欢迎大家分享。

初一数学教案最新

初一数学教案最新1

  一、学习与导学目标:

  知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

  过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;

  情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

  二、学程与导程活动:

  A、准备活动:

  1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

  2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

  提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

  归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

  B、学习概念:

  1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

  一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

  2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

  3、从上述意义上看,你看如何规定0的相反数更为合理?

  商讨得:0的相反数仍是0,即0的相反数等于它本身。

  C、应用举例:

  1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

  2、如果a=-a,那么表示数a的.点在数轴上的什么位置?a=?(a=0)。

  3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

  结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?

  4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

  +(-2/3),-(-2/3),-(+2/3),+(+2/3)

  你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

  5、若a=-5,则-a=;若-x=7,则x=。

  三、笔记与板书提纲:

  课题应用举例中的2

  活动引例应用举例中的4、5

  概念

  四、练习与拓展选题:

  1、教科书P18/3;

  2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学教案最新2

  【教学目标】

  1、理解同类项、合并同类项的概念。

  2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。

  3、感受其中的“数式通性”和类比的数学思想。

  【教学重点】

  理解同类项的'概念;掌握合并同类项法则。

  【教学难点】

  正确运用法则及运算律合并同类项。

  【教学过程】

  一、知识链接

  1、运用运算律计算下列各题。

  ①6×20+3×20=②6×(-20)+3×(-20)=

  2、口答。

  8个人+5个人=8只羊+5只羊=

  8个人+5只羊=

  [意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]

  二、探究新知

  探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?

  (1)请列式表示:,你能对上式进行化简计算吗?

  (2)说说化简计算的依据。

  [意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]

  探究二:根据以上式子的运算,化简下列式子。

  ①100t-252t

  ②3x2+2x2

  ②3ab2-4ab2

  ④2m2n3-5m2n3

  (1)上述各多项式的项有什么共同特点?

  (2)上述多项式的运算有什么共同特点,有何规律?

  [意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]

  三、例题精炼

  例1、合并同类项。

  4x2+2x+7+3x-8x2-2

  例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。

  [意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]

  四、课堂小结

  这节课你学到了哪些知识?

  [意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]

  五、课堂检测(略)

初一数学教案最新3

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点:深化对正负数概念的理解

  知识重点:正确理解和表示向指定方向变化的量

  教学过程:(师生活动)设计理念

  知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示、这就是说:数的范围扩大了(数有正数和负数之分)、那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论

  (数0既不是正数又不是负数,是正数和负数的分

  界,是基准、这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数 。

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分、在引入

  负数后,0除了表示一个也没有以外,还是正数和负数的分界、了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性、“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明、这个问题只要初步认识即可,不必深究、

  分析问题

  解决问题问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)、

  类似的例子很多,如:

  水位上升-3m,实际表示什么意思呢?

  收人增加-10%,实际表示什么意思呢?

  可视教学中的实际情况进行补充、

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的.关健、这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出、

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数、)

  本课作业

  1,必做题:教科书第7页习题1.1第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分、在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助、由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课、

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解、

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识、通过实际例子的学习激发学生学习数学的兴趣、

初一数学教案最新4

  [教学目标]

  1、了解多边形及有关概念,理解正多边形及其有关概念、

  2、区别凸多边形与凹多边形、

  [教学重点、难点]

  1、重点:

  (1)了解多边形及其有关概念,理解正多边形及其有关概念、

  (2)区别凸多边形和凹多边形、

  2、难点:

  多边形定义的准确理解、

  [教学过程]

  一、新课讲授

  投影:图形见课本P84图7、3一1、

  你能从投影里找出几个由一些线段围成的图形吗?

  上面三图中让同学边看、边议、

  在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

  (1)它们在同一平面内、

  (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的、

  这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

  提问:三角形的定义、

  你能仿照三角形的定义给多边形定义吗?

  1、在平面内,由一些线段首位顺次相接组成的图形叫做多边形、

  如果一个多边形由n条线段组成,那么这个多边形叫做n边形、(一个多边形由几条线段组成,就叫做几边形、)

  2、多边形的边、顶点、内角和外角、

  多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角、

  3、多边形的`对角线

  连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线、

  让学生画出五边形的所有对角线、

  4、凸多边形与凹多边形

  看投影:图形见课本P85、7、3—6、

  在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形、

  5、正多边形

  由正方形的特征出发,得出正多边形的概念、

  各个角都相等,各条边都相等的多边形叫做正多边形、

  二、课堂练习

  课本P86练习1、2、

  三、课堂小结

  引导学生总结本节课的相关概念、

  四、课后作业

  课本P90第1题、

  备用题:

  一、判断题、

  1、由四条线段首尾顺次相接组成的图形叫四边形、()

  2、由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形、()

  3、由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形、()

  4、在同一平面内,四条线段首尾顺次连接组成的图形叫四边形、()

  二、填空题、

  1、连接多边形的线段,叫做多边形的对角线、

  2、多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形、

  3、各个角,各条边的多边形,叫正多边形、

  三、解答题、

  1、画出图(1)中的六边形ABCDEF的所有对角线、

  2、如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

  3、如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

  4、如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

【初一数学教案最新】相关文章:

最新小班数学教案05-04

最新大班数学教案08-09

简易方程初一数学教案04-16

初一的考试数学最新试题10-23

初一上册数学教案优秀07-22

大班数学教案:5的组成最新07-28

北师大版初一数学教案模板07-27

2016最新初一暑假作业答案07-31

最新初一生物教学反思10-17

最新地理初一寒假作业答案10-09