数学渗透法制教育的教案模板(通用5篇)
作为一位无私奉献的人民教师,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?下面是小编为大家收集的数学渗透法制教育的教案模板(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
数学渗透法制教育的教案1
教学目的:
(一)知识方面
1.使学生了解小数的产生。
2.使学生理解小数的意义。
3.掌握小数的计算单位及单位间的进率。
(二)能力方面
1.培养学生的动手操作能力及观察力。
2.培养学生的抽象概括能力。
(三)德育方面
渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解和抽象小数的意义。
教学难点:抽象小数的意义。
教具学具准备:投影片、直尺。
教学步骤
一、铺垫孕伏
填空(投影出示)
(1)0.1是( )分之一。0.7里有( )个0.1。
(2)10个0.1是( )。10个0.01是( )。
(3)写成小数是( )。写成小数是( )。
(4)1米=( )分米=( )厘米=( )毫米。
二、探究新知
1.导入新课:
同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。(板书:小数的产生和意义)
2.教学小数的产生
(1)引导学生动手量课桌的宽度,发现了什么?
(2)请同学们口答下面的题:(用整数表示结果)
1000÷10= 100÷10= 10÷10= 1÷10=
(3)总结:在测量和计算时,往往得不到整数的结果,这时也常用小数表示。由于日常生活和生产的需要,从而产生了小数。
3.教学小数的意义
(1)填写
①投影出示:在图中填出分数和小数。
学生填完结果并订正
②启发学生:把1米平均分成10份,每份是多少分米?3份呢?
③引导学生口述:1分米是10分之1米,还可写成0.1米?(板书:
④总结:分母是10的分数可以写成几位小数?(板书:一位小数)
(2)出示米尺教具
这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组方式讨论,然后找同学回答,教师板书:
[学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是100的分数可以写成两位小数]
(3)问:把1米平均分成1000份,每份长是多少?
学生在尺上找出1毫米,而后出示(投影)1厘米的放大图
引导学生从图中找出1毫米,并说明理由。启发学生明确:1毫米
提问:分母是1000的分数可以写成几位小数?(板书:三位小数)
(4)抽象、概括小数的意义
①把1米看成一个整体,如把一个整体平均分成10份、100份、1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。
这样的分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开。
③什么叫小数?引导学生讨论。
④师生共同概括:
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。
⑤完成"做一做"。
(5)教学小数的计数单位。
①学习阅读教科书,学习小数的计算单位。
②出示0.457,每个数位上的数各表示几个几分之一?
三、巩固发展
1.填表格:
2.判断:
(1)0.40里面有4个0.01()
(2)35克=0.35千克()
3.把小数改写成分数
0.9 0.09 0.0359
四、全课小结:这节课你有哪些收获?
五、独立作业:
六、板书设计
数学渗透法制教育的教案2
教学内容
教科书52~53页小数的读写法,完成做一做题目和练习九的第6~7题。
教学目的
使学生会读、写小数,并进一步理解小数的意义。
教学重点:使学生会读、写小数。
教具准备:幻灯、幻灯片
教学过程:
一、复习
1、0.2是()位小数,表示()分之();
0.15是()位小数,表示()分之();
0.008是()位小数,表示()分之()。
2、0.4的计数单位是(),它有()个这样的计数单位;
0.07的计数单位是(),它有()个这样的计数单位;
0.138的计数单位是(),它有()个这样的计数单位。
二、新课
1、教学小数的数位顺序表。
前面我们已经认识了小数,谁能举出一些小数的例子?
(0.20.050.0050.01……)
这些小数有什么共同特点?(小数点左边的数都是0)
在日常生活中你还见过其他的小数吗?谁能举出一些例子?
(1.540.63.1346.8……)
这些小数的小数点的左边还是0吗?
观察一下:小数可以分为几部分?
是不是所有的小数都比1小?
谁还记得整数的数位顺序?每个数位的计数单位是什么?相邻的计数单位间的进率是多少?
学生边回答边在黑板上板书整数数位顺序表。
接着提问:0.2表示什么?(表示两个十分之一)十分之一是它的计数单位;0.05表示什么?(表示百分之五,有五个百分之一)百分之一是它的计数单位。0.006表示千分之六,有六个千分之一,千分之一是它的计数单位。
十分之一、百分之一、千分之一、万分之一等都是小数的计数单位。这些小数的计数单位那个?
多少个十分之一是整数1?
多少个百分之一是十分之一?
多少个千分之一是百分之一?
这些小数每相邻两个计数单位间的进率是多少?(10)
这和整数相邻两个计数单位间的进率是一样的,因此,一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右边,向整数一样计数。
10个十分之一是整数1,整数个位的右边应该是什么位?
多少个百分之一是十分之一?十分位右边应该是哪一位?百分位右边应该是哪一位呢?再往下还有万份位、十万份位等,所以我们在数位表上用……
十分位的计数单位是多少?百分位、千分位、万分位的计数单位分别是多少?
指出345.679整数部分中的每一位分别是什么位?
再指出小数部分的十分位、百分位、千分位上分别是多少?
2、教学小数的读法
出示古钱币的相关数据:高:0.58米、厚:3.5厘米、重:41.47千克
问:你会读出古钱币的有关数据吗?
谁能总结一下小数的读法?
强调:读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
完成做一做:读出下面小数
3、教学小数的写法
(1)例3:据国内外专家实验研究预测:到2100年,与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。
你会写出上面这段话中的小数吗?
(2)做一做:写出下面的小数。
零点零七五点零六十点零零二
三百点七一零点零一四十五点五零三
三、巩固练习
1、填空
0.9里面有()个0.1
0.07里面有()个0.01
4个()是0.04
2、小数点右边第二位是()位,第四位是()位,第一位是(),第三位是()。
3、说出24.375每个小数位上的数各是几个几分之一?
4、读出下面各数
(1)南江长江大桥全长6.772千米。
(2)土星绕太阳转一周需要29.46年。
(3)1千瓦时的电量可以使电车行驶0.84千米。
数学渗透法制教育的教案3
教学目标:
1.理解并掌握“单价×数量=总价、速度×时间=路程”这两种数量关系,并能运用数量关系解决实际问题。
2.初步培养学生运用数学术语的能力,发展学生分析、比较、归纳、抽象、概括的能力。
3.感受数学知识与生活的密切联系,在解决问题的过程中感受三位数乘两位数笔算方法的应用价值。
教学重点:理解并掌握单价、数量和总价及速度、时间和路程之间的关系。
教学难点:运用数学术语概括、表达数量关系,并能在解决问题的过程中加以应用。
教学准备:课件
教学过程:
一、谈话引入
1.回顾生活中的常见问题。(课件出示题目)
(1)每个书包50元,4个书包多少钱?
(2)一列动车每小时行200千米,4小时行多少千米?
(3)李师傅每天生产15个零件,他6天可以生产多少个零件?
指名学生口头列式,师生交流反馈。
2.导入新课。
在日常生活中,存在着许许多多的数量关系,弄清楚这些常见的数量关系,对于我们分析问题和解决问题都有很大帮助。这节课我们就一起来学习生活中常见的数量关系。(板书课题)
二、交流共享
(一)教学单价、数量和总价的关系。
1.课件出示教材第28页例题2情境图。
学生观察情境图,收集情境中的信息:钢笔每支12元,练习本每本3元;要买4支钢笔和5本练习本。
2.理解“单价”“数量”和“总价”。
(1)提问:什么是单价?什么是数量?什么是总价?
(2)追问:每种商品的单价各是多少?购买的数量呢?
(3)介绍单价的读法和写法。
(4)认识总价。
引导思考:根据题目中购买钢笔的情况,我们可以求什么呢?
指出:“4支钢笔一共多少钱”指的就是4支钢笔的总价。
3.理解单价、数量和总价的数量关系。
(1)课件出示下表:
单价数量总价
钢笔()元/支()支()元
练习本()元/本()本()元
让学生先填写商品的单价和购买的数量,再分别求出总价。教师巡视,发现错误及时纠正。
(2)交流讨论:总价与单价、数量之间有什么关系?
教师结合学生的汇报情况进行板书:
总价=单价×数量
(3)思考:已知总价和单价,可以求什么?怎样求?已知总价和数量呢?
师生交流后板书:
数量=总价÷单价
单价=总价÷数量
4.师生共同小结。
根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。我们在记这一组数量关系式时,只要记住“总价=单价×数量”,就可以根据乘法算式各部分之间的关系,得出“数量=总价÷单价”和“单价=总价÷数量”。
(二)教学速度、时间和路程的关系。
1.课件出示教材第28页例题3情境图。
引导学生读题,收集情境图中的信息。
2.理解“速度”“路程”和“时间”的含义。
(1)提问:情境中给出的两条信息可以称为什么?
(2)交流速度的'写法和读法。
先让学生自己阅读教材,再进行交流。
(3)认识时间和路程。
提问:行程问题中除了速度之外,还有哪些数量呢?
指名说说对时间和路程的理解。
3.探究速度、路程和时间的数量关系。
(1)课件出示下表:
单价数量总价
列车()千米/时()时()千米
自行车()米/分()分()米
学生先填写和谐号列车与李冬骑自行车的速度,再分别求出行驶的路程。教师巡视,发现错误及时纠正。
(2)交流讨论:路程与速度、时间之间有什么关系?教师结合学生的汇报情况进行板书:
路程=速度×时间
(3)思考:已知路程和速度,可以求什么?怎样求?已知路程和时间呢?
师生交流后板书:
时间=路程÷速度
速度=路程÷时间
4.小结。
三、反馈完善
1.完成教材第29页“练一练”第1~3题。
第1题:练习单价和速度的写法。
第2题:运用例题3的数量关系解决求路程的问题。
第3题:运用例题2的数量关系解决求总价的问题。
学生独立完成并集体订正。
2.完成教材第30~31页“练习五”第8、9题。
第8题:已知路程和时间求速度的问题。
第9题:已知总价和数量求单价的问题。
学生独立完成,汇报时让学生说说题中的数量关系各是什么。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
数学渗透法制教育的教案4
教学目标:
1.结合生活中的例子,理解精确数和近似数的含义。
2.掌握用“四舍五入”的方法求一个数的近似数,学会用“四舍五入”的方法省略“万”或“亿”后面的尾数,求出它的近似数。
3.引导学生观察、体验数学与生活的密切联系,培养学生主动探究的精神和应用数学的意识。
教学重点:能正确判断生活中的近似数和精确数,会用“四舍五入”的方法求一个数的近似数。
教学难点:灵活运用“四舍五入”的方法求一个数的近似数。
教学准备:课件
教学过程:
一、谈话引入
师:我今年三十五岁了,度过了一万多个日日夜夜。
想一想:在老师介绍自己的这两个数字中,你认为哪个数字描述得更精确?为什么?
引导学生畅所欲言,在学生交流的过程中教师进行实时指导,引导学生得出:三十五岁更精确,一万多个日日夜夜是个近似(大概、大约)的数。
导入:今天这节课我们就一起来学习和近似数有关的知识。(板书课题)
二、交流共享
(一)认识近似数
1.课件出示教材第21页例题6情境图。
2.初步感知。
让学生读一读两个情境中的信息,联系情境中的内容想一想:如果让你把划线的四个数字分一分,你想怎样分?为什么?
学生独立思考后,教师组织交流。
3.加深理解。
(1)思考:你知道上面哪些数是近似数吗?
教师在学生思考、交流的基础上明确:220万和1902万是近似数;生活中一些事物的数量,有时不需要用精确的数表示,而只用一个与它比较接近的数来表示,这样的数是近似数。
(2)让学生结合具体例子说说生活中的近似数。
(二)求一个数的近似数
1.课件出示教材第21页例题7“2012年某市人口情况统计表”。
让学生观察表格中的数据,并读出这几个数。
2.借助直线理解找一个数的近似数的方法。
(1)教师出示一条直线:
38万39万
(2)在直线上描出表示男性与女性人数的点。
提问:表示男性与女性人数的点大约在直线的什么位置?分别把它们描出来。
学生尝试在教材的直线上进行描数。
教师投影学生完成的结果:
38万38420438668539万
(3)观察直线,探究找近似数的方法。
提问:观察直线上384204和386685这两个数,它们各接近多少万?
学生独立思考后,小组交流。教师巡视,了解学生的交流情况。
组织全班交流。
鼓励学生各抒己见,学生可能会有以下两种思考方法:
方法一:384204在385000的左边,接近38万;386685在385000的右边,接近39万。
方法二:384204千位上是4,比385000小,接近38万;386685千万位上是6,比385000大,接近39万。
教师对以上两种方法都应给予肯定。
3.介绍“四舍五入”的方法。
(1)教师介绍用“四舍五入”的方法求一个数的近似数。
用“四舍五入”的方法求一个数的近似数,要把这个数按要求保留到某一位,并把它后面的尾数省略。尾数的位上的数如果是4或比4小,就把尾数的各位都改写成0;如果是5或比5大,要在尾数的前一位加1,再把尾数的各位改写成0。
(2)用“四舍五入”的方法求出男性和女性人数的近似数。
先让学生独立写,再组织汇报交流,交流时让学生说说是怎样运用“四舍五入”的方法来求它们的近似数的。
教师根据学生汇报板书:
384204≈380000
386685≈390000
4.完成教材第22页“试一试”。
(1)课件出示题目。
(2)让学生独立思考后,在小组内交流汇报。
(3)提问:怎样将一个数改写成用“万”或“亿”作单位的近似数?
学生交流讨论,教师归纳。
三、反馈完善
1.完成教材第22页“练一练”。
这道题是结合生活情境来区分精确数和近似数。其中,56785和1617是准确数,4600000000、2000000和3000000是近似数。
2.完成教材第24页“练习四”第5~10题。
学生独立完成后集体汇报。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
数学渗透法制教育的教案5
教学目标:
1.掌握多位数的大小比较方法,能正确比较多位数的大小。
2.掌握整万数和整亿数改写成用“万”或“亿”作单位的方法,能正确地进行改写。
3.培养学生知识迁移的能力,渗透优化的数学思想。
教学重点:掌握多位数的大小比较方法和改写的方法。
教学难点:灵活运用知识解决数学问题。
教学准备:课件
教学过程:
一、谈话引入
1.课件出示下列两个数:
4000004000000
(1)提问:你能读出这两个数吗?分别让学生读一读。
(2)解决问题:十万位上的“4”表示什么?百万位上的“4”又表示什么?
师:为什么同样的数字“4”,在不同的数位上所表示的大小是不一样的?
启发学生思考,并明确:不同数位上的数表示不同的意义。
(3)比一比,这两个数哪个大哪个小?指名回答。
2.在○里填上“>”“<”或“=”。
988○1000765○489566○581
反馈时让学生说说比较万以内数的大小的方法。
3.导入:刚才,我们对于万以内数的大小的比较方法进行了回顾,下面我们来看一看,这种方法对万以上的多位数是否也适用?这就是这节课要学习的内容。(板书课题)
二、交流共享
1.课件出示教材第20页例题5。
让学生观察表格,说一说,这三年出版社图书的种类各是多少?
指名读一读,得出信息。
2.独立思考,完成排序。
提问:这三年出版的图书数量各不相同,哪一年出版的种类多?哪一年出版的种类少?请同学们按从大到小的顺序排列。
学生独立思考后进行比较和排序。教师巡视,进行个别指导。
3.小组交流。
师:请同学们把自己比较的方法在小组内进行交流,看看小组内同学之间有没有不同的比较方法,谁的方法更加简便。
学生在小组内进行交流。教师巡视,参与个别小组交流,了解学生的交流情况。
4.组织全班交流汇报。
学生可能会有以下两种比较方法,如果没有,教师可以进行必要引导。
方法一:370000>300000>250000
提问:你是怎么想的?
引导学生得出:先看三个数的位数是否相同,三个数都是六位数;再比较位,位大的数就大。
追问:如果位相同,又该怎么比呢?
生答:就比较第二位,第二位大的数就大……
方法二:250000=25万,300000=30万,370000=37万,37>30>25,37万>30万>25万
5.数的改写。
(1)引导学生关注数的改写过程。
提问:第二种方法可行吗?在比较这三个数的大小时,要先做什么?(将三个数改写成用“万”作单位的数)
追问:什么样的数可以改写成用“万”作单位的数呢?
(2)教师引导学生观察两种比较方法,提问:两种比较的方法相同吗?哪一种方法更简便?
引导学生通过观察思考,领悟到:将这三个数先改写成用“万”作单位后再比较更简便。
(3)小组讨论:怎样将一个整万或整亿的数改写成用“万”或“亿”作单位?
组织交流汇报:把一个整万的数改写成用“万”作单位的数,只要把这个数末尾的4个0去掉,在后面加上一个“万”字;把一个整亿的数改写成用“亿”作单位的数,只要把这个数末尾的8个0去掉,在后面加上一个“亿”字。
(4)即时练习。
课件出示题目:你能先把这三年各类图书的总印数改写成用“亿”作单位的数,再把它们按从大到小的顺序排列吗?
6300000000=()亿
7000000000=()亿
7700000000=()亿
()亿>()亿>()亿
(5)小结:在日常生活中,为了方便,常常把整万或整亿的数改写成用“万”或“亿”作单位的数。
三、反馈完善
1.完成教材第21页“练一练”第1题。
先组织学生对这几个数进行分级,再读一读,最后再在教材上进行改写。
2.完成教材第21页“练一练”第2题。
先比较大小,再说说大小比较的方法。
3.完成教材第23页“练习四”第1~4题。
学生独立完成后,组织讲评、订正。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
【数学渗透法制教育的教案模板(通用5篇)】相关文章: