- 三年级数学《可能性大小》教案 推荐度:
- 相关推荐
可能性大小的教案(精选14篇)
在教学工作者实际的教学活动中,编写教案是必不可少的,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?下面是小编精心整理的可能性大小的教案,欢迎大家分享。
可能性大小的教案 1
教学目标:
1、 通过猜测实践验证,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出可能
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用可能来描述。(板书:可能不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(xx可能会赢,xx可能会输,从不同角度说说)
2、引出不可能、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的`输赢情况,并说说理由。从而引出一定、不可能
(板书:(一定 -- 确定)
(不可能 --确定)
3、小结:刚才我们所讲到的可能、不可能、一定它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用可能、不可能、一定来说一说。
4、练习(课件出示)
(1)小红说:出生到现在我没有吃过一点东西。
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢 。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的可能性就差不多了。
三、 生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性大小的教案 2
目标:
1、让学生通过“猜测——试验——分析试验数据,让学生经历事件发生可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。
2、在交流活动中培养学生协作能力。
重点:
认识“可能性的大小”的规律。
难点:
初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
教学具准备:盒子,乒乓球,幻灯片。
教学过程:
一、谈话引入
师:老师手中有一盒白色的粉笔,从中抽取一支书写课题,你觉得会是什么颜色?
生:白色
师:请一位同学用更准确的语言描述,你来。
生:一定是白色。(板书:一定)
师:有可能是红色的吗?有可能是其它颜色的吗?
生:不可能。(板书:不可能)
师:老师插入三支蓝色的,再随便抽一支,会是什么颜色?
生:可能是白色,也可能是蓝色。(板书:可能)
师:掌声送给他。哪种可能性大,为什么?
生:白色的数量多,可能性大;蓝色的数量少,可能性小。(板书:数量多,可能性大;数量少,可能性小)
师:到底是不是呢?我们这节课就通过摸球游戏来验证我们刚才猜想的`数量与可能性的关系。(板书:摸球游戏---可能性的大小)
二、自主探究
1.布置活动任务。
师:在游戏前,我们先来看看游戏规则。
课件出示“4人小组合作”的规则:
(1)小组成员轮流摸球,摸球前摇一摇,不能偷看。
(2)摸出1个球记录1次是什么颜色的,然后把球放回盒里再摸。
小组长记录,白球用“√”表示,红球用“×”表示。
(3)小组交流:盒子里藏着什么秘密?为什么会出现这样的实验结果?
可能性大小的教案 3
教学目标:
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
教学重点:
学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
教学难点:
利用可能性的知识解决实际问题。
教具准备:
两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件。
学具准备:
颜色笔。
教学过程:
一、创设情境,激趣猜测
1、听故事,激发学习兴趣
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放)
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会......很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都装有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)
师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题。
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果汇报一下?
学生汇报。
3、推测、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?(学生汇报)
师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
(打开盒子看看。)
师:好!莫老师数三声,我们就一起把盒子打开吧!
师:请同学们数一数,盒子里有几个红球?有几个蓝球?知道了这两种色球的数量,再联系刚才的试验结果,你知道了什么?
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色的'球可能性大?为什么?好,请6个小组长一起来摸摸看。
(3)归纳。
师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色的球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?
三、应用、拓展
师:其实生活中还有不少事情的出现与可能性的大小有关,你们能运用今天学习的可能性大小的知识来解决一些生活中的实际问题吗?
1、转转盘。(课本106页的“做一做”。)
师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?
(生可能会选黄色)你为什么会选黄色格呢?
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)
师:为什么只有()个同学拿到图案?
真聪明!那就把这张图案送给你吧?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
转盘由蓝色和红色两种颜色组成。
要求一:指针指在红色的可能性大;
要求二:指针指在蓝色的可能性大。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)。
师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)
师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?
师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)
师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?
师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)
5、猜一猜。(练习二十第10题。)
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有x个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、延伸
1、延伸。
师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,但老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流,好吗?
2、。
(1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上窜进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样喜新厌旧哦!
五、板书设计
可能性大小
数量多可能性大
数量少可能性小
可能性大小的教案 4
教学目标:
1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。
2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的理由。
3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。
教学过程:
一、创设情境
师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和“说一说”的问题,让学生发表自己的意见。
(设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的兴趣,又是摸棋子活动的准备。)
二、摸棋子实验A
1、教师提出摸棋子的活动和用“正”字记录黑白棋子的出现次数的要求,全班同学轮流摸棋子。
(设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)
2、交流学生统计的情况,把结果记录在表(一)合计栏。
(设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)
3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。
(设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)
三、摸棋子实验B
1、提出:如果把盒子中的棋子换成9个黑的,1个白的,会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)
2、让学生观察描述统计结果。
然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)
四、摸棋子实验C
1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。
(设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)
2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在两次实验结果的.分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)
五、可能性大小
1、提出“议一议”的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。
(设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)
2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。
(设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)
六、课堂练习与问题讨论
学生独立完成练习。
教学反思:
可能性大小的教案 5
[教学内容]
摸球游戏(第87页)
[教学目的]
通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。
[教学过程]
1、交流中复习旧知
师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:
(1)你认为小青摸出的球可能是什么颜色?
(2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。
2、在分析中理解数的表示方法
师:现在盒子里只有2个红球,能否摸到白球呢?
生:不能。因为盒子里没有白球。
师:那么可以用一个数来表示从这个盒子里摸到的白球的`可能性呢?
生:用0,因为0代表没有。那么摸出红球的情况呢?
生:一定能摸到红球,因为盒子里都是红球。
师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)
3、在观察、讨论中理解数的表示方法
师出示一个只有1个红球与一个白球的盒子。
师:从这个盒子中摸到红球的可能性是多少呢?
生:摸到红球的可能性是一半。
师:如果用数来表示摸到红球的可能性,可以怎样表示?
生:12。
师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)
4、课堂练习:
87页1题、2题。(生小组讨论)
5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。
6、布置作业:
87页下面的实践活动题。
可能性大小的教案 6
教材分析
从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球的可能性。
学情分析
是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。
教学目标
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点和难点
重点:理解并掌握用分数表示可能性的大小的基本思考方法。
难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。
教学过程
一、复习旧知,唤起经验。
同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。
板书:可能性
这一环节的设计是从学生感兴趣的事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。
二、创设情境、引导发现
1、教学例1
(1)课件出示例1场景图 ,提出问题。
足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?
提问:用猜左右的方法决定由谁先发球公平吗?为什么?
2、同步体验:试一试
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。
三、迁移和提升。
教学例2
1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)
2、提问迁移。
3、对比提升。
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的'思考方法。
四、实践与应用。
1、生活中的数学问题。(一边说一边出示“转一转”课件)
2、出示练一练
这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。
五、巩固练习
六、课堂小结
这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。
可能性大小的教案 7
教学目标:
1、使同学了解有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性是有大小的,能用分数表示。
2、结合生活实例,进一步让同学体验生活中存在的数学问题。
教学重难点:
使同学经历实验的具体过程,从中体验某些事情发生的可能性的大小。
教学准备:
白球1个、黄球3个、红绿两种颜色的铅笔等。
教学过程:
一、情境、引入
1、师述、情境:庆“庆六一”联欢会,教师要求每人都要扮演节目,节目的形式有:唱歌、跳舞、相声、小品等。用抽签的方法决定。
小华在抽签之前想:我是金嗓子,最好让我抽到唱歌……
2、讨论:小华肯定能如愿以偿吗?为什么?
[点评]:给同学发明机会留有空间,让同学开动脑筋,捕获生活中的现象,将所学的知识和同学的生活实际紧密结合,加深对数学知识的理解。这一情境,是同学经历过并且有体验,所以他们知道小华有可能抽不到唱歌,有可能抽得到,但抽到的可能性不大,因为在这些签中只有一张签是唱歌,这就自然引出课题:可能性大小。
3、小结:在我们的生活中,有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性有大有小。今天我们就学习(板书)可能性大小。
二、实验探究
1、摸球活动。
活动规则:准备3个黄球,1个白球,球的大小一样,放进袋子里,搅拌一下。
(1)同桌活动。每人摸10次,每次摸一个球,然后把摸出来的球放进去,搅拌后再摸第2次、第3次……填好摸20次的统计表(可用“正”字)。
(2)同学分组活动。
(3)观察:第一次实验结果与预测结果一样吗?
(4)四人一小组活动,填好摸40次的统计表。
(5)观察讨论:汇总后的结果与预测结果是否接近?
(6)小结:摸的'次数越多,结果与预测结果越接近。
[点评]:这一活动体现了“动手实践、自主探索与合作交流”的学习方式,同学从实践中获取知识。
2、练习教材89页中的1—4题。
(1)同学独立考虑,进行练习。
(2)集体交流,讨论学习情况,并说明你的理由。
三、拓展、延伸
1、在一个正方体中标出1、2、3三个数,符合下面要求:数字1和数字2的可能性都是1/6,数字3的可能性是2/3。
2、摸奖活动。
(1)盒子里有4红、2绿,两种颜色的铅笔,要求先说出你想摸一支什么颜色的铅笔?可能性是多少?然后到盒子里摸,假如说的和摸的颜色一致,就可以拿走这支铅笔。
(2)盒子里有红色、蓝色、黑色三支一样的笔,假如随意拿出2支笔,可能出现多少种结果?
[点评]:这是同学比较感兴趣的活动,富有情趣和挑战性,为同学提供充沛发展的空间。
四、总结:这节课你有什么收获?
[总评]
本节课的关键在于关注了同学的学习过程,教师创设了一个有利于同学生动活泼主动发展的教育氛围,教师真正成为教学活动的组织者、引导者和合作者。从实际教学效果看,同学学得积极主动,时时闪烁着创新思维的火花。
可能性大小的教案 8
[教学内容]
教材第94、95页的内容,第96页练习十八的第1、2题。
[教学目标]
1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、使学生在学习过程中乐意与他人交流自己的'想法,并获得一些成功的体验。
[教学重点]
会用分数表示简单事件发生的可能性大小。
[教学难点]
理解并掌握用分数表示可能性大小的基本思考方法。
[教学过程]
一、谈话
你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。
大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)
[教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的同时一定会产生自豪感的,同时进行了思想教育。]
二、新课教学
1、教学例1。
谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)
你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的想法先和你同桌交流一下。
全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。
老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。
[教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]
可能性大小的教案 9
教学目标:
使学生进一步掌握用分数表示实际生活中简单事件发生的可能性的方法,并能根据事件发生的可能性大小的要求,设计相应的活动,提高了学生用数表达和交流信息的能力。
教学重点、难点:
根据事件发生的可能性大小的要求,设计相应的活动。
教学过程:
一、复习
师:你能举例说说上一节课我们学习了什么?
二、新课。
1、出示练习十八第3题。
先让学生说出摸到每张卡片的可能性,再说出摸到奇数和偶数的可能性。让学生先写出答案,再指名说说思考的过程。
2、出示练习十八第4题。
第(1)题可以让学生根据题意独立完成。第(2)题可以先让学生数一数这个转盘被平均分成了多少份,再启发学生思考:要使指针转动后停在红色区域的可能性是1/2,涂红色的份数应该占10份的几分之几?要使指针转动后停在绿色区域的可能性是2/5。又应把几份涂成绿色?
3、出示练习十八第5题。
应引导学生从分数的含义出发,找到符合题义的放法。
4、出示练习十八第6题。
先组织学生讨论:怎样才能列举出“石头、剪刀、布”游戏中可能出现的各种情况?明确方法后,再让学生把题中的表格填写完。
5、出示练习十八第7题。
让学生独立思考回答,并说说怎样想的。
三、应用拓展。
1、按要求进行设计。
(1)有两个正方形转盘,任意转动指针,要使A盘指针停在红色区域的可能性为1/4,使B盘指针停在红色区域的可能性为3/8。请你设计各转盘颜色区域,把你的设计画出来,并涂上颜色。
(2)在下面的口袋中放入若干个白球和黑球,任意摸40次,摸出白球的可能是16次(每次摸出球后仍放回)。按照这样的`可能性大小,请你在袋中画出两种球的个数。(“○”为白球,“●”为黑球)
学生在练习纸上独立完成后,进行交流,要求说说自己的想法(这两题的答案都一唯一)。
2、:可能性和生活联系很密切,课后请同学们做个有心人,用数学的眼光去观察生活,找找生活中哪些事件和可能性有关。
3、机动题:
学校要在我们六年级某个班级中任选一位同学接受昆山电视台记者的采访,如果这个班男生被选中的可能性是3/5,已知这个班的男生有24人,那么这个班的女生有多少人?
可能性大小的教案 10
教学内容:
教材P93《铺地砖》
教学目标:
1.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。
2.进一步增强估算意识,提高学生运用数学解决生活中问题的能力。
3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。
4.体会数学与生活的联系,感受数学的.作用和价值。
教学重点:
运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。
教学难点 :
灵活运用面积计算的知识解决实际问题。
教学流程与设计
一、汇报课前调查情况,做好设计准备
师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?
师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)
二、联系实际,小组讨论计算。
1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。
2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。
(估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)
50×50=2500(平方厘米)=0.25(平方米)
5×4=20(平方米)
20÷0.25=80(块)
80×8=640(元)
师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。
40×40=1600(平方厘米)=0.16(平方米)
5×4=20(平方米)
20÷0.16=125(块)
125×5=625(元)
通过计算用40*40地转铺地更省钱
三、活动小结,发散联想
师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?
板书设计:
估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)
50×50=2500(平方厘米)=0.25(平方米)
5×4=20(平方米)
20÷0.25=80(块)
80×8=640(元)
师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。
40×40=1600(平方厘米)=0.16(平方米)
5×4=20(平方米)
20÷0.16=125(块)
125×5=625(元)
通过计算用40*40地转铺地更省钱
可能性大小的教案 11
教学目标:
1、能对生活中事件的可能性进行判定,并能用数字表示可能性的大小。
2、通过摸球实验,培养学生的合作意识和实践验证能力。
3、培养学生解决生活实际问题的能力和对数学的学习兴趣。
教学重点:
用“不可能”、“可能”、“一定能”对生活中的事件进行判定,用数字表示可能性的大小。
教学难点:体会学习用数字表示可能性的方法和探究过程。
教具准备:
5个纸盒,黄、白乒乓球若干。
教法与学法:
教师为主导,学生为主体,通过对学生已有生活经验和旧知识的迁移,课堂实践,合作探究与总结达成教学目标。
教学过程:
一、激情导入:
“我们每个人都有自己的理想,那么今天,在上课之前就让我们交流、畅谈一下自己的理想怎么样?”……(学生畅谈理想,教师适当点评激励)
现在老师这里有三个盒子,第一个盒子装有4个黄球,第二个盒子装有2个黄球、两个白球,第三个盒子装有4个白球。假设老师盒子里的球是有魔力的,摸到黄球你的理想就一定能实现,摸到白球你的理想就无法实现,你会到哪个盒子里摸球呢?为什么?
二、探究新知
1、学生发言,引出新知
(1)学生发言:选择到第一个盒子当中去摸,因为第一个盒子里装有4个黄球,任意摸一次就一定能摸到黄球。第三个盒子里全是白球,没有黄球,所以不可能摸到黄球。第二个盒子中可能摸到黄球也可能摸到白球。
(2)教师板书学生发言,板书:
一定能 可能 不可能
(3)验证:
任选学生到每个盒子中摸4次,看是否和猜测一致。
2、用数字表示可能性,并说明理由。
一定能 可能 不可能
3、实践验证(装有2个黄球2个白球的盒子里摸到黄球的可能性接近1/2)
(1)分组。
(2)分工:1人监督(公正性、次数)1人统计(共摸20次,每摸完一次把球放到盒子里,摇一摇,有画正字法统计摸到黄球的次数。)
(3)活动开始,教师巡视指导。
(4)小组汇报、交流。
有的组少于10次,有的组正好10次,有的组多于10次,这是因为理论和实践存在着一定的误差,因为有一定的偶然性,是可以理解的。
4、想要使摸到黄球的可能性变大一些该怎么办?(把其中的1个白球换成黄球)
集体验证摸到黄球的`可能性接近3/4。
5、要使摸到黄球的可能性变小一些,变成1/4,该怎么办?(盒子中放1个黄球,3个白球)
6、观察这些数据,你发现了什么?
(可能性有大有小)教师板书课题:可能性的大小
可能性的大小随条件的变化而变化,条件改变,可能性逐渐变大,趋于一定能(1),条件改变,可能性逐渐变小,趋于不可能(0)。
三、巩固练习
1、用“一定能”、“可能”、“不可能”判断下列有关可能性事件。
(1)老师今年24岁,20年后,你们的年龄会超过老师。
(2)老师的身高是1.82米,若干年后你们的身高会超过老师。
(3)明天下雪。
(4)2008年,在北京举行的29届奥运会中,中国的金牌数超过美国,排在第1位。
(5)二十年后,你们当中的某个人乘坐“神舟十号”宇宙飞船,登上月球。
2、同学们看过非凡少年这个栏目吗?少?二等奖的可能性是多少?三等奖的可能性是多少?抽到奖的可能性是多少?(用分数表示)
四、小结本课
用“一定能”、“可能”、“不可能”说一句话……
老师送给同学们一句话:有理想,努力加之自信能使不可能变成可能,可能变成一定能。祝同学们梦想成真。
板书设计:
可能性的大小
一定能←—— 可能 ——→不可能
1 3/4 1/2 1/4 0
教后反思:
这节课的开头我让学生畅谈理想,然后巧设悬念,激发起他们的思考积极性和学习兴趣。在这一环节,学生的反响很强烈,达到预期效果。
接下来就是利用学生已有的生活经验和旧知识的迁移把数学从生活中提炼出来,也把学生从生活中引入数的殿堂。学生的合作验证探究过程进行的也很顺利,尤其是在集体验证盒子中装3个黄球,1个白球,摸到黄球的可能性是3/4中,共摸了20次,恰好摸到了15次黄球,猜想与实践完全吻合,学生惊叹不已,这既是必然又是一种巧合。
一节课当中,如果没有让学生练习的时间我觉得算不上一节成功的课,所以在练习巩固这一环节,我设计了许多生活化、情境化、学生关注、感兴趣的问题,学生乐于去思考,自然效果也不错。
当然这节课当中,我也有一些很困惑的地方,此如用分数表示可能性的大小,给学生思考的时间和阐述理由的时间太少,可能有一些同学没有理解透彻,但如果在这里耽搁了太长时间,那么后面就没有了练习的时间,就会顾此失彼,这一环节怎样处理希望各位领导和老师给我一些合理建议,我一定虚心接受。
在教学的结尾,我送给学生一句话:有理想、自信加之努力,能使不可能变成可能,使可能变成一定能。这既照应了导入,又体现了可能性的大小是可以改变的这一思想,同时又对学生的一生具有一定的启发作用。
可能性大小的教案 12
教学目标:
1、使学生联系分数的意义,初步掌握用分数表示具体数量中简单事件发生的可能性的方法。会用分数表示可能性的大小,进一步加深对可能性大小的认识。
2、在理解用分数表示可能性大小的意义中体会统计概率的随机现象,感受到试验的次数越多频率越接近概率。
3、使学生在学习用分数表示大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与学习数学的兴趣。
教学重点:
理解并掌握用分数表示可能性大小的方法。
教学难点:
理解用分数表示可能性大小的意义。(这个地方我的意思是理解用分数表示可能性的大小和用分数表示他的事物的大小是不一样的。)
教学过程:
一、在情境中,体会用分数表示可能性大小的必要性。
师直接出示书中的情景:依次出示书中的五个盒子(1)两个红球(2)两个白球(3)一个红一个白(4)三个白5个红(5)5个红3个白(这个地方把教材的数字稍作了改动,主要是为了后面的实验更有利于学生发现,试验次数越多频率越接近概率。)
问题:分别从这些盒子中任意摸出一个球,说一说从不同的盒子里摸出白球的可能性。
预设:学生可能会
1、利用学过的不可能、一定、可能性相等、可能性小、可能性比较大来回答。
2、也可能直接用分数来回答。
师根据不同的情况作不同的导入
1、可能性大有多大呢?具体大到什么程度呢?就向说你已经很大了,到底有多大呢?你需要告诉人家你今年11了。一样可能性的大小也可以用一个数来表示,这就是我们这节课重点要来研究的问题。板书:用数来表示可能性的大小。
2、这位同学不但知道了摸到白球的可能性有大有小,还能用一个数来具体表示可能性的到底有多大,那么他说的有没有道理呢?这就是这节课我们要来重点研究的问题。板书:用数来表示可能性的.大小。
设计意图:给学生独立思考的空间,学生根据学过的可能性知识或者结合自己的生活经验来解答,在解答的过程中了解学生学习新知的起点:或者直接用不可能、一定、可能等语言来表达;或者直接用数据分数来表达。教师及时地调整教学的策略。另这个地方同时使学生体会到进一步学习用分数表示可能性大小的必要性。用语言来表达可能性有局限性,需要进一步学习把可能性的语言转化为数据来表示。
二、会用分数表示可能性的大小。
1、理解不可能事件用数据0来表示
师:不可能摸到白球我们可以用几来表示呢?你同意吗?为什么?
2、一定能摸到白球用数据1来表示。
设计意图:先处理不可能和一定两个确定的事件用数据如何表示的目的是
1、通过这种描述语言转化为数据表示的过程,为后续用分数表示可能性作了铺垫。
2、初步感受到,不确定可能性事件用分数表示的范围在0—1之间
3、用二分之一表示等可能性
师:红、白球各一个摸到白球的可能性占多少呢?为什么呢?
设计意图:从最简单的事件入手理解用分数表示可能性大小的方法
如果我再往里放一个红球,这个时候摸到白球的可能性又是多少呢?
(及时巩固练习用分数表示可能性的方法)
师:为什么?那摸到红球的可能性是多少呢?你是怎么想的?
预设:1、观察知道红球占三分之二
2、推理知道白球占三分之一红球就是三分之二
设计意图:理解三分之一加三分之二等与1
4、你能自己用一个数来表示后两个盒子摸到白球的可能性的大小吗?
5、那可能性最大是多少?最小呢?也就是说可能性总是在0—1之间发生变化。
设计意图:我想用分数表示可能性的大小,很多孩子都能完成。但为什么要这么表示可能会说不清楚。在教师的引领下对自己的解决问题的思路就更加清晰了,另外感受到不确定可能性事件用分数表示的范围在0—1之间
三、体会概率现象中的随机性
摸到白球的可能性是8分之3,是不是摸8次球就一定能摸到3次白球呢?肯定有说是有说不是的。这时候在孩子们需要试验的需求上进行试验。讲好试验的要求。
1、同桌合作一个摸一个做好记录。我发给他们记录的表。
2、每人摸四次,每次摸一个,在放回盒中摇匀
全班交流
师板书学生的数据:看到这些数据你有什么想法?
是我们的推理错了吗?引导学生把班级的实验数据相加感受次数越多越近概率。
设计意图:用分数表示可能性大小的内容属于统计与概率的领域。主要的特性应该是随机性,如何培养孩子的随机意识?我通过了让学生亲自试验来感受它的随机性,发现试验的结果和我们推理的不一样。进一步反思追问为什么?逐步理解试验次数越多,频率就越接近概率。
师:通过实验和讨论现在你能解释一下8分之3表示什么了吗?
设计意图:在试验与反思过后再来理解用分数表示可能性大小的意义。明确和用分数表示可能性的大小和用分数表示其他事物的大小是不一样的,它是不确定的。
师:既然不确定那我们用分数表示可能性的大小有什么价值呢?过渡到下一个环节
四、联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
设计意图:虽然用分数表示的是不确定现象,但我们可以根据分率的大小的比较来确定我们的选择
师:如果天气预报降水的概率是百分之十,你出门会带雨伞吗?天气预报降水的概率是百分之九十,你出门会带雨伞吗?降水率是百分之九十九一定会洚水吗?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
设计意图:体会学习用分数表示可能性的价值
五、总结
可能性大小的教案 13
教学目标:
1、通过整理与复习,进一步巩固理解用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、进一步认识到数学与生活的联系,感悟生活中任何幸运与偶然的背后都是有科学规律支配的。
教学重点、难点:
巩固用分数表示可能性的大小。
复习过程:
一、谈话导入:
1、本学期我们学习了用分数表示可能性的大小,请你举例说明。
2、学生举例说明。
二、基本练习:填空题,逐题出示,学生回答,并说明想法。
1、一个骰子的六个面分别是1-6点,掷骰子落下后,1点朝上的可能性是( )。
2、口袋中有红、黄、绿球各2个,每次任意摸一个球,摸到红球的可能性是( )。
3、一副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。如果是两副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。
4、口袋中放8个球,如果要保证摸到红球的可能性是3/4,口袋中应放()个红球。
5、五1班有男生25人,女生20人。要抽1名学生参加抽测,抽到男生的可能性是(),抽到女生的可能性是()。
6、袋中有6个红球,2个白球,每次从中任意摸一个(摸好放回)。摸40次,白球大约摸到()次。
7、有12个乒乓球,其中6个是红球,6个是黄球。从中任意摸一个,摸到红球的可能性是( )。如果第一次摸出1个红球(摸好不放回),第二次又摸出一个红球(摸好不放回),再继续摸,那么第三次摸时,摸到红球的可能性是( )。如果每次摸好后都放回呢?体会两种操作程序的不同,结果也不同。
8、抛一枚硬币,连续9次都正面朝上,第10次抛出,正面朝上的可能性为( )。
体会每次抛到正面朝上的可能性都是1/2。不会因前面抛到的结果影响到后面的可能性。
9、红红和四个女生及三个男生一起玩捉迷藏,红红捉到一个同学,这名同学是女生的可能性是()。
体会其中的可能性只与被捉的学生有关,与红红无关。
三、综合题
(一)画一画
1、右图是一个转盘,请在转盘上画上阴影,使指针转动后,停在阴影部分的可能性是1/4。
2、有10枚围棋子,从中任意摸一枚,摸到黑子的可能性是4/5。请你画出符合条件的10枚围棋子。
(二)连一连
3、在每个口袋里任意摸一个球,摸到黑球的可能性是多少?连一连。
(图意:4个口袋中分别装:2黑3白,3黑3白,4黑6白,4黑4白)
可能性是2/5可能性是1/2
(三)辩一辩
4、袋中有3个红球和2个黄球。如果摸到红球算小明赢,摸到黄球算小军赢,这个游戏公平吗?为什么?你认为谁获胜的把握大些?比赛的结果是否一定小明赢?为什么?
5、从1——10十张牌中任意取两张牌,牌面数字相加,和是奇数的可能性是多少?是偶数的可能性是多少?如果和是偶数算小明赢,和是奇数算小军赢,游戏公平吗?如果换成1——9九张牌做上面的游戏,公平吗?
6、骰子的六个面分别是1-6不同的点数,现在把两个骰子一起掷,骰子朝上的一面的的点数相加可以得到2-12不同的点数。掷一次,得到不同点数的可能性相同吗?为什么?如果猜中点数有奖,你认为猜多少点的可能性最大?猜多少点的可能性最小?
7、一种彩票是由0-9的任意数字组成的三位数组合而成,如315或426等等。某人买了一张彩票,请分析他中奖的可能性。
8、出示教材上第118页上第25题。学生读题理解题目意思,按要求回答问题,并说明想法。
9、出示教材上第119页上第26题。
先出示图,提问:这两张图按虚线能否折成正方体?说明理由。(相连的虚线必须是5条)
读题理解题目意思。按要求涂色、写数。
说明想法。将图形剪下来沿虚线折一折验证。
教学后记
课前思考:
这一节复习课内容紧扣第八单元的教学重点,设计的练习形式多样,“画一画”、“连一连”、“辩一辩”等内容都是学生们喜欢的,这样的复习课一定能让学生们的.复习兴趣调动起来,相信通过这些练习和相关的复习,能让学生联系分数的意义,进一步学会用分数表示具体情境中简单事件发生的可能性的大小,掌握其方法,并能根据事件发生的可能性大小的要求,设计出相应的活动方案。这部分内容是小学阶段最后一次学习可能性,可以进一步加深对可能性大小的认识。
另外,补充这样的实际问题供学生练习:
1.袋中要放红、黄、蓝三色球共5个,如果40人每人任意摸一次(摸完后球仍放回袋中)。要让摸到红球的可能为16次,袋中要放几个球?
2.从不透明的口袋中任意摸1次,摸到红球的可能性是2/9。已知袋中的红球有6个,白球有10个,其余是黑球,黑球可能有几个?
可能性大小的教案 14
教学目标:
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点:
理解并掌握用分数表示可能性的大小。
教学难点:
在认识事件发生的不确定现象中感受统计概率的`数学思想。
教学准备:
演示课件、乒乓球、布袋、棋子、纸盒等。
教学过程:
一、情境与问题
1、课前谈话,狄青百钱定军心
2、问题引入
师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)
师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)
师:可能性有大有小。(板书:可能性的大小)
二、探究与交流
1、教学例1
出示例1场景图
问:裁判在做什么?(猜球。场景再现)
问:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1/2?
2、同步体验
教师拿出一个口袋,向里面放入一个黄球,问:从中任意摸出一个球,摸到黄球的可能性是几分之几?
学生提问:其中有几个球?其中几个黄球?
动手摸一摸,边摸边问:这时可以得出结论了吗?
(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)
试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?
学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,
摸到黄球的可能性又是几分之几?
问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。
问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?
小结:放5个球,其中黄球1个。
三、迁移与提升
1、教学例2
出示例2中的实物图(逐一出示,学生说出各是什么牌)
问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?
讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1/6。
一共有6张牌,摸到每张牌的可能性都是1/6。
问:你还想到什么问题?
小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)
汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?
(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。
汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?
(对比练习:红桃A红桃2红桃3黑桃A黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)
2、同步练习
看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?
(自由说一说)
3、阅读拓展
阅读教材94、95页,还有什么问题吗?
出示“你知道吗?”
四、实践和应用
1、成语里的数学(用分数表示成语里某个事件的可能性的大小)
十拿九稳百发百中智者千虑必有一失
2、操作和推测
口袋里装着白色和黑色的棋子共4个。如果不打开袋子看,你们有办法知道哪种颜色的棋子有几个吗?
根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?
组织操作,搜集摸球结果,汇总发现。
指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。
可能性的大小离不开统计。
练习:如果指针转动80次,可能有多少次停在红色区域,可能有多少次停在黄色或蓝色区域?
3、活动里的数学
现场设奖现场抽奖
学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。
4、故事释疑
【可能性大小的教案】相关文章:
三年级数学《可能性大小》教案范文08-26
关于可能性教案(精选14篇)12-15
人教版小数的大小比较教案(精选17篇)02-01
小班数学比较大小教案10-21
小班认识大小教案(通用7篇)04-08
小班数学按大小分类教案06-11
中班数学比大小教案12-10
小班公开课教案比大小08-26
《大大小小》小班教案(精选18篇)10-11
小班数学大小排序游戏教案04-07