《圆面积的简单问题(一)》的教案
教学目标:
1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。
2、能灵活运用圆的面积公式解决生活中已知直径求面积的简单实际问题。
3、感受数学与生活的密切联系,培养学生的应用意识。
课前准备:一个直径30厘米的水桶。
教学过程:
一、创设情境
师生谈话,交流在什么地方见过什么形状的草坪。
师:同学们,随着社会和经济的发展,人们越来越注意美化环境,许多地方都种植了草坪,谁来说说你在什么地方见到过什么形状的草坪呢?
指名回答,给学生充分交流的机会。
二、草坪面积
1、教师口述问题,并板书出相关数据。
师:许多活动场所都有草坪,有些建筑前也有草坪,下面我们就来解决一个关于建草坪的问题。某公司要在办公大楼前建一个圆形草坪,计划草坪直径为11米。
板书:圆形草坪直径11米
2、提出书中的问题,让学生讨论一下:草皮和草坪面积的关系,再自己计算。 师:现在的问题是需要多少平方米草皮呢?请大家先想一想:草皮和草坪的面积有什么关系?
生:草皮的面积就是这个圆形草坪的面积。
师:对,已知圆的半径求面积,大家已经比较熟悉了,那么知道了这个圆形草坪的直径,怎么求它的面积呢?请同学们试着算一算,得数保留整数。
学生试算,教师巡视,了解学生计算情况。
3、全班交流计算的过程和方法。注:如果有的学生分两步,先算出半径,再计算面积要给予肯定。列综合算式计算时,重点说明掌握( )2的计算顺序。 师:谁来说一说你是怎么算的,结果是多少?
生1:我先求出圆形草坪的半径11÷2=5.5(米),再用3.14×5.52≈95(平方米),需要约95平方米草皮。
教师板书:11÷2=5.5(米)
3.14×5.52≈95(平方米)
生2:我列的.是综合算式,因为r= ,圆的面积S=πr2,所以圆面积计算公式还可以写成S=π( )2,列式为3.14×( )2=3.14×30.25≈95(平方米),需要约95平方米草皮。
如果学生没有出现第二种列式方法,教师参与交流,并特别说明。
师:同学们注意,在综合算式里的( )2要先算小括号里的 ,求出商后再平方。边说边板书:3.14×( )2=3.14×30.25≈95(平方米)
师:同学们利用圆面积公式解决草坪面积的问题。下面,我们再来解决一个实际问题。
三、水桶盖面积
1、教师拿出直径30厘米的水桶,先让学生猜测桶口的直径,再提出加木盖,以及木盖比桶口直径大10厘米的事情,提出计算水缸盖面积的问题,鼓励学生试算。
出示水桶。
师:这个水桶大家都非常熟悉,猜一猜这个水桶桶口的直径是多少?
学生猜,猜中给予表扬,猜不中,教师告诉,并板书出来:
水桶桶口直径30厘米。
师:现在要给这个水桶加一个大一点儿的木盖。木盖的直径比桶口的直径大10厘米。
板书:木盖直径大10厘米。
师:你们能算出这个木盖的面积吗?试一试!
学生试做,教师巡视,个别指导。
2、全班交流。重点说一说计算的方法和结果。 师:谁来说一说你是怎么算的,结果是多少?
生:先计算出木盖的直径,用30+10=40(厘米),再计算木盖的面积3.14×( )2=3.14×202=3.14
×400=1256(平方厘米)
教师板书出算式。
四、归纳整理
1、让学生看90页的两个问题,并找一找有什么共同点?
师:请同学们打开书90页,课本上的两个问题,就是我们刚才解决的问题。自己读一读,看一看,这两个问题有什么共同点?
学生读书。
2、分别讨论:两个问题有什么共同点?已知直径求圆的面积,先算什么,再怎样计算?使学生知道:要先算出半径,再用圆面积公式计算圆的面积。 师:谁来说一说这两个问题有什么共同点?
学生可能会说:
(1)都利用圆的面积公式计算。
(2)都是已知直径求面积。
(3)都要先算出半径,再求面积。
师:已知直径求面积,要先算什么,再怎样计算?
生:要先算出半径,再利用圆面积公式计算。
五、课堂练习
1、“练一练”第1题,让学生独立完成。
师:看来同学们已经掌握了已知直径求圆面积的计算方法。下面我们打开课本第91页,看“练一练”中的第1题,自己读题,并解答。
学生独立完成,教师巡视。
师:谁来说一说你的做法,这个标志牌的面积是多少?
生1:我先求出这个标志牌的半径40÷2=20(厘米),再计算标志牌的面积:3.14×202=1256(平方厘米)
生2:我是用综合算式计算的。标志牌的面积是3.14×( )2=1256(平方厘米)
2、“练一练”第2、3题,让学生自主计算,然后全班订正。 师:我们继续看第2题。自己计算的几个圆的面积。看谁计算的都正确。
师:第3题是三个不同直径的圆,请同学们计算出它们的面积。
学生算完后,交流。
3、练一练第4题,课外实践性作业。 师:第4题,请同学们回家后,测量、计算并填表。
【《圆面积的简单问题(一)》的教案】相关文章: