教案

整式的乘除与因式分解教案

时间:2024-10-02 07:39:45 教案 我要投稿
  • 相关推荐

整式的乘除与因式分解教案

  作为一名老师,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?以下是小编为大家收集的整式的乘除与因式分解教案,欢迎大家分享。

整式的乘除与因式分解教案

整式的乘除与因式分解教案1

  第十五章 整式的乘除与因式分解

  根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

  15.1.2 整式的.加减

  (3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高练习:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

  2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

  试化简:│a│-│a+b│+│c-a│+│b+c│

  小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

  作 业:课本P14习题1.3:1(2)、(3)、(6),2。

  《课堂感悟与探究》

整式的乘除与因式分解教案2

  15.1.1 整式

  教学目标

  1.单项式、单项式的定义.

  2.多项式、多项式的次数.

  3、理解整式概念.

  教学重点

  单项式及多项式的有关概念.

  教学难点

  单项式及多项式的有关概念.

  教学过程

  Ⅰ.提出问题,创设情境

  在七年级,我们已经学习了用字母可以表示数,思考下列问题

  1.要表示△ABC的周长需要什么条件?要表示它的面积呢?

  2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?

  结论:

  1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.

  2.小王的平均速度是 .

  问题:这些式子有什么特征呢?

  (1)有数字、有表示数字的字母.

  (2)数字与字母、字母与字母之间还有运算符号连接.

  归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

  判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)

  代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

  Ⅱ.明确和巩固整式有关概念

  (出示投影)

  结论:(1)正方形的周长:4x.

  (2)汽车走过的路程:vt.

  (3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.

  (4)n的相反数是-n.

  分析这四个数的特征.

  它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

  请同学们阅读课本P160~P161单项式有关概念.

  根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

  结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.

  问题:vt中v和t的指数都是1,它不是一次单项式吗?

  结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

  生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

  写出下列式子(出示投影)

  结论:(1)t-5.(2)3x+5y+2z.

  (3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.

  (4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

  我们可以观察下列代数式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

  这样推理合情合理.请看投影,熟悉下列概念.

  根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

  a+b+c的项分别是a、b、c.

  t-5的项分别是t、-5,其中-5是常数项.

  3x+5y+2z的项分别是3x、5y、2z.

  ab-3.12r2的项分别是 ab、-3.12r2.

  x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

  这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.

  Ⅲ.随堂练习

  1.课本P162练习

  Ⅳ.课时小结

  通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.

  Ⅴ.课后作业

  1.课本P165~P166习题15.1─1、5、8、9题.

  2.预习“整式的加减”.

  课后作业:《课堂感悟与探究》

  15.1.2 整式的加减(1)

  教学目的:

  1、解字母表示数量关系的过程,发展符号感。

  2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

  教学重点:

  会进行整式加减的运算,并能说明其中的`算理。

  教学难点:

  正确地去括号、合并同类项,及符号的正确处理。

  教学过程:

  一、课前练习:

  1、填空:整式包括 和

  2、单项式 的系数是 、次数是

  3、多项式 是 次 项式,其中二次项

  系数是 一次项是 ,常数项是

  4、下列各式,是同类项的一组是( )

  (A) 与 (B) 与 (C) 与

  5、去括号后合并同类项:

  二、探索练习:

  1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为

  这两个两位数的和为

  2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为

  这两个三位数的差为

  ●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

  说说你是如何运算的?

  ▲整式的加减运算实质就是

  运算的结果是一个多项式或单项式。

  三、巩固练习:

  1、填空:(1) 与 的差是

  (2)、单项式 、 、 、 的和为

  (3)如图所示,下面为由棋子所组成的三角形,

  一个三角形需六个棋子,三个三角形需

  ( )个棋子,n个三角形需 个棋子

  2、计算:

  (1)

  (2)

  (3)

  3、(1)求 与 的和

  (2)求 与 的差

  4、先化简,再求值: 其中

  四、提高练习:

  1、若A是五次多项式,B是三次多项式,则A+B一定是

  (A)五次整式 (B)八次多项式

  (C)三次多项式 (D)次数不能确定

  2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

  记0分,那么某队在比赛胜5场,平3场,负2场,共积多

  少分?

  3、一个两位数与把它的数字对调所成的数的和,一定能被14

  整除,请证明这个结论。

  4、如果关于字母x的二次多项式 的值与x的取值无关,

  试求m、n的值。

  五、小结:整式的加减运算实质就是去括号和合并同类项。

  六、作业:第8页习题1、2、3

  15.1.2整式的加减(2)

  教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

  2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。

  教学重点整式加减的运算。

  教学难点:探索规律的猜想。

  教学方法:尝试练习法,讨论法,归纳法。

  教学用具:投影仪

  教学过程:

  I探索练习:

  摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。

  (1)摆第10个这样的“小屋子”需要 枚棋子

  (2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。

  二、例题讲解:

  三、巩固练习:

  1、计算:

  (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

  (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

  3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么

  (1)第一个角是多少度?

  (2)其他两个角各是多少度?

  四、提高练习:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

  2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

  (y+3)2=0,且B-2A=a,求A的值。

  3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

  试化简:│a│-│a+b│+│c-a│+│b+c│

  小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

  作 业:课本P14习题1.3:1(2)、(3)、(6),2。

整式的乘除与因式分解教案3

  整式乘除与因式分解

  一.回顾知识点

  1、主要知识回顾:

  幂的运算性质:

  aman=am+n(m、n为正整数)

  同底数幂相乘,底数不变,指数相加.

  =amn(m、n为正整数)

  幂的乘方,底数不变,指数相乘.

  (n为正整数)

  积的乘方等于各因式乘方的积.

  =am-n(a≠0,m、n都是正整数,且m>n)

  同底数幂相除,底数不变,指数相减.

  零指数幂的概念:

  a0=1(a≠0)

  任何一个不等于零的数的零指数幂都等于l.

  负指数幂的概念:

  a-p=(a≠0,p是正整数)

  任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

  也可表示为:(m≠0,n≠0,p为正整数)

  单项式的乘法法则:

  单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

  单项式与多项式的乘法法则:

  单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

  多项式与多项式的乘法法则:

  多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

  单项式的除法法则:

  单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

  多项式除以单项式的法则:

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

  3、因式分解:

  因式分解的定义.

  把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

  掌握其定义应注意以下几点:

  (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

  (2)因式分解必须是恒等变形;

  (3)因式分解必须分解到每个因式都不能分解为止.

  弄清因式分解与整式乘法的内在的关系.

  因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的.形式.

  二、熟练掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

  (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

  (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

  2、公式法

  运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

  常用的公式:

  ①平方差公式:a2-b2=(a+b)(a-b)

  ②完全平方公式:a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

【整式的乘除与因式分解教案】相关文章:

整式的乘除和因式分解测试卷08-08

整式除法教案设计08-15

乘除法的意义及关系的教案范文08-05

《整式的加减》教案设计与反思06-02

整式的加减数学教案10-24

整式教学设计09-01

因式分解优秀教案(通用5篇)05-27

加减乘除的教学设计09-01

C语言加减乘除运算09-22

数学因式分解同步练习09-26