教案

中小学数学三元一次方程组解法教案

时间:2022-10-06 16:43:59 教案 我要投稿
  • 相关推荐

中小学数学三元一次方程组解法教案

  教 学 过 程 设 计

中小学数学三元一次方程组解法教案

  一、创设问题情境,复习旧知识,激发学生兴趣,引出本节要研究的内容.

  活动1 纸币问题

  小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?

  学生活动设计:

  设1元2元分别为x张、y张,如何列方程组?用什么消元法比较好呢?

  只设一个未知数,用一元一次方程能否求解?(能,但不方便。对未知量较多的问题,所设的未知数越少,方程往往越难列。其实题中有三个未知量我们就设三个未知数来解决。)

  自然想法是,设1元、2元、5元的纸币分别是x张、y张、z张,根据题意可以得到下列三个方程:

  x+y+z=12,

  x+2y+5z=22,

  x=4y.

  这个问题的解必须同时满足上面三个条件,因此可以把三个方程合在一起写成

  教师活动设计:

  在学生活动的基础上,适时给出三元一次方程组的概念,并激发学生探究其解法的热情.

  板书:三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.

  活动2 讨论如何解三元一次方程组

  我们知道二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么能否用同样的思路,用代入法或加减法消去三元一次方程组的一个或两个未知数,把它转化成二元一次方程组或一元一次方程呢?观察方程组:

  ①

  ②

  ③

  仿照前面学过的代入法,可以把③分别代入①②,得到两个只含y,z的方程:

  4y+y+z=12

  4y+2y+5z=22

  即

  得到二元一次方程组后就不难求出y和z的值,进而可以求出x了.(问题:同学们还有不同的消元法吗?比较一下哪种方法较好。)

  总结:

  解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即

  板书:

  三元一次方程组

  二元一次方程组

  一元一次方程

  消元(代入、加减) 消元

  三元变二元最佳方法:

  ①

  ②

  ③

  1、有表达式的用代入法;2、缺某元,消某元;3、相同未知数的系数相同或相反或整数倍的用加减消元法。例分析:p114习题1

  二、主体探究,培养学生解决问题的能力.

  例题分析:解三元一次方程组

  ①

  ②

  ③

  分析:方程①只含x,z,因此可以由②③消去y,得到一个只含x,z的方程,与方程①组成一个二元一次方程组.

  解:②×3+③,得

  11x+10z=35 ④

  ①与④组成方程组

  解这个方程组,得

  把x=5,z=-2代入②得

  因此三元一次方程组的解为 

  板书:(可略)解三元一次方程步骤、格式:1)、三元变二元(有的可直接变一元),利用代入消元法或加减消元法或其他简便的方法,把三元变二元的方程组;2)、解这个二元一次方程组,求得两个未知数的值;3)、将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值;4)、把这三个数写在一起就是所求的三元一次方程组的解。

【中小学数学三元一次方程组解法教案】相关文章:

三元一次方程组北师大版数学初二上册教案10-15

七年级数学下二元一次方程组的解法训练题04-18

实际问题与二元一次方程组教案(通用6篇)04-24

初一下册数学二元一次方程组应用题04-19

二元一次方程组教学设计(精选5篇)05-07

《一元二次不等式解法》高中数学教案(通用7篇)09-29

初二数学一元一次函数教案09-20

快乐数学大班教案 大班数学快乐数学教案11-17

数学欣赏教案08-28

小学数学备课教案 数学课备课教案02-14