- 相关推荐
中小学数学三元一次方程组解法教案
教 学 过 程 设 计
一、创设问题情境,复习旧知识,激发学生兴趣,引出本节要研究的内容.
活动1 纸币问题
小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?
学生活动设计:
设1元2元分别为x张、y张,如何列方程组?用什么消元法比较好呢?
只设一个未知数,用一元一次方程能否求解?(能,但不方便。对未知量较多的问题,所设的未知数越少,方程往往越难列。其实题中有三个未知量我们就设三个未知数来解决。)
自然想法是,设1元、2元、5元的纸币分别是x张、y张、z张,根据题意可以得到下列三个方程:
x+y+z=12,
x+2y+5z=22,
x=4y.
这个问题的解必须同时满足上面三个条件,因此可以把三个方程合在一起写成
教师活动设计:
在学生活动的基础上,适时给出三元一次方程组的概念,并激发学生探究其解法的热情.
板书:三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
活动2 讨论如何解三元一次方程组
我们知道二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么能否用同样的思路,用代入法或加减法消去三元一次方程组的一个或两个未知数,把它转化成二元一次方程组或一元一次方程呢?观察方程组:
①
②
③
仿照前面学过的代入法,可以把③分别代入①②,得到两个只含y,z的方程:
4y+y+z=12
4y+2y+5z=22
即
得到二元一次方程组后就不难求出y和z的值,进而可以求出x了.(问题:同学们还有不同的消元法吗?比较一下哪种方法较好。)
总结:
解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即
板书:
三元一次方程组
二元一次方程组
一元一次方程
消元(代入、加减) 消元
三元变二元最佳方法:
①
②
③
1、有表达式的用代入法;2、缺某元,消某元;3、相同未知数的系数相同或相反或整数倍的用加减消元法。例分析:p114习题1
二、主体探究,培养学生解决问题的能力.
例题分析:解三元一次方程组
①
②
③
分析:方程①只含x,z,因此可以由②③消去y,得到一个只含x,z的方程,与方程①组成一个二元一次方程组.
解:②×3+③,得
11x+10z=35 ④
①与④组成方程组
解这个方程组,得
把x=5,z=-2代入②得
因此三元一次方程组的解为
板书:(可略)解三元一次方程步骤、格式:1)、三元变二元(有的可直接变一元),利用代入消元法或加减消元法或其他简便的方法,把三元变二元的方程组;2)、解这个二元一次方程组,求得两个未知数的值;3)、将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值;4)、把这三个数写在一起就是所求的三元一次方程组的解。
【中小学数学三元一次方程组解法教案】相关文章:
三元一次方程组北师大版数学初二上册教案10-15
七年级数学下二元一次方程组的解法训练题04-18
实际问题与二元一次方程组教案(通用6篇)04-24
初一下册数学二元一次方程组应用题04-19
二元一次方程组教学设计(精选5篇)05-07
初二数学一元一次函数教案09-20
快乐数学大班教案 大班数学快乐数学教案11-17
数学欣赏教案08-28
小学数学备课教案 数学课备课教案02-14