教案

同角的三角函数的基本关系教案

时间:2024-09-12 23:05:57 教案 我要投稿

同角的三角函数的基本关系教案

  同角的三角函数的基本关系

  一、目标:

同角的三角函数的基本关系教案

  ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;

  2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;

  3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.

  二、教学重、难点

  重点:公式 及 的推导及运用:(1)已知某任意角的`正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.

  难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.

  三、学法与教学用具

  利用三角函数线的定义, 推导同角三角函数的基本关系式: 及 ,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.

  教学用具:圆规、三角板、投影

  四、教学过程

  【创设情境】

  与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.

  【探究新知】

  探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一

  下同一个角不同三角函数之间的关系吗?

  如图:以正弦线 ,余弦线 和半径 三者的长构成直角三角形,而且 .由勾股定理由 ,因此 ,即 .

  根据三角函数的定义,当 时,有 .

  这就是说,同一个角 的正弦、余弦的平方等于1,商等于角 的正切.

  【例题讲评】

  例1化简:

  解:原式

  例2 已知

  解:

  (注意象限、符号)

  例3求证:

  分析:思路1.把左边分子分母同乘以 ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.

  证法1:左边= 右边,

  ∴原等式成立

  证法2:左边= =

  = 右边

  证法3:

  证法4:∵cosx≠0,∴1+sinx≠0,∴ ≠0,

  ∴ = = =1,

  ∴左边=右边 ∴原等式成立.

  例4已知方程 的两根分别是 ,

  求

  解:

  (化弦法)

  例5已知 ,

  求

  解:

  【课堂练习】

  化简下列各式

  1.

  2.

  3.

  练习答案:

  解:(1)原式=

  (2)原式=

  【学习小结】

  (1)同角三角函数的关系式的前提是“同角”,因此 , .

  (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.

  (1)作业:习题1.2A组第10,13题.

  (2)熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关

  系式;注意三角恒等式的证明方法与步骤.

  【课后作业】见学案

  【板书设计】略

【同角的三角函数的基本关系教案】相关文章:

《同角三角函数的基本关系式》教案09-28

三角函数教案(通用5篇)07-03

关于《三角函数的周期性》的教案09-15

数学三角函数教学设计06-22

锐角三角函数教案设计(通用10篇)05-24

高一数学三角函数基本公式06-03

高一数学三角函数公式大全06-12

《同根情》教案实录07-20

认识角教案08-08

角的度量教案优秀09-16