- 相关推荐
镶嵌数学教案参考
一、教学目标
1.会用正多边形无缝隙、不重叠地覆盖平面。
2.让学生在应用已有的数学知识和能力,探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用意识,获得各种体验。
二、教学活动的建议
探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。
建议本节教学活动采用以下形式:
(1) (1) 学生自己提出研究课题;
(2) (2) 学生自己设计制订活动方案;
(3) (3) 操作实践;
(4) (4) 回顾和总结。
教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。
三、关于镶嵌
1. 1. 镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的原因:
(1) 如果用数学的眼光观察事物,那么用正方形的地砖铺地,就是正方形这种几何图形可以无缝隙、不重叠地拼合。
(2) 几何中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。
2. 2. 各种平面图形能作平面镶嵌的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360。
(1)用同一种正多边形镶嵌,只要正多边形内角的度数整除360,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、的内角的度数都不能整除360,所以这些正多边形都不能镶嵌。
(2)用两种或三种正多边形镶嵌,详见163~166页内容。
(3)用一种任意的凸多边形镶嵌。
从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)
【镶嵌数学教案参考】相关文章:
正方形的周长数学教案设计参考07-29
比较数的大小中班数学教案设计参考07-04
小学六年级数学教案参考-分数乘法10-04
Schoollife教案参考07-05
关于语文试题精选参考07-28
数学教学参考总结11-01
小学语文试题参考08-06
英语作文模板参考09-02
关于下雨了的教案参考10-24
中考英语短语参考10-02