教案

八年级数学教案关注三角形的外角

时间:2024-09-12 18:41:47 教案 我要投稿
  • 相关推荐

八年级数学教案关注三角形的外角

  关注三角形的外角

八年级数学教案关注三角形的外角

  ● 教学目标

  (一)教学知识点

  1.三角形的外角 的概念.

  2.三角形的内角和定理的两个推论.

  (二)能力训练要求

  1.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力.

  2.理解掌握三角 形内角和定理的推论及其应用.

  (三)情感与价值观要求

  通过探索三角形内角和定理的推论的活动,来培养 学 生的论证能力,拓宽他们的解题思路.从而使他们灵活应用所学知识.

  ●教学重点

  三角形内角和定理的推论.

  ●教学难点

  三角形的外角、三角形内角和定理的推论的应用.

  ●教学方法

  启发、诱导法.

  ●教具准备

  投影片四张

  第一张 :想一想(记作投影片6.6 A)

  第二张:推论(记作投影片6.6 B)

  第三张:例 1(记作投影片6.6 C)

  第四张:例2(记作投影片6.6 D)

  ●教学过程

  Ⅰ.巧设现实情境,引入新课

  上节课我们证明了三角形内角和定理,大家来回忆一下:它 的证明思路是什么?

  在证明这个定理时,先把△ABC的一边BC延长,这时在△ABC外得到ACD,我们把ACD叫做三角形ABC的外角.

  那三角形的外角有什么性质呢?我们这节课就来研究三角形的外角及其应用.

  Ⅱ.讲授新课

  那什么叫三角 形的外角呢?

  像ACD那样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.

  外角的特征有三条:

  (1)顶点在三角形的一个顶点上.如:ACD的顶点C是△ABC的一个顶点.

  (2)一条边是三角形的一边.如:ACD的一条边AC正好是△ABC的一条边.

  ( 3)另一条边是三角形某条边的延长线.如:ACD的边CD是△ABC的BC边的延长线.

  把三角形各边向两方延长,就可以画出一个三角形所有的外角.由此可知:一个三角形有6个外角,其中有三个与另外三个相等,所以研究时,只讨论三个外角的性质.

  下面大家来 想一想、议一议(出示投影片6.6 A)

  图6-57

  如图6-57,1是△ABC的一个外角,1与图中的其他角有什么关系呢?能 证明你的结论吗?

  很 好.由此我们得到了三角形的外角的性质(出示投影片6.6 B)

  三角形的一个外角等 于和它不相邻的两个内角的和.

  三角形的一个外角大于任何一个和它不相邻的内角.

  .在这里,我们通过三角形内 角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定 理的推论(coro llary).

  因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用.

  注意:应用三角形内角和定理的推论时,一定要 理解其意思.即:和它不相邻的意义.

  下面我们来研究三角形内角和定理的推论 的应用( 出示投影片6.6 C)

  [

  图6-59

  [例1]已知,如图6-59,在△ABC中,AD平分外角EAC,C,求证:AD∥BC.

  现在大家来想一想:若证明两个角不相等、 或大于、或小于时,该如何证呢?(出示投影片6.6 D)

  图6-60

  [例2]已知,如图6-60,在△ABC中,1是它的一个外角,E是边AC上一点,延长BC到D,连接DE.

  求证:2.

  [ 师生共析]一般证明角不等时,应用三角形的一个外角大于任何一个和它不相邻 的内角来证明.所以需要找到三角形的外角.

  证明:∵1是△ABC的一个外角(已知)

  3(三角形的一个外角大于任何一个和它不相邻的内角)

  ∵3是△CDE的一个 外角(已知)

  2(三角形的一个外角大于任何一个和它不相邻的内角)

  2(不等式的性质)

  [师]很好.下面我们 通过练习来进一步熟悉掌握三角形内角和定理的推论.

  Ⅲ.课堂练习

  (一)课本P201 随堂练习1

  图6-61

  1.已知,如图6-61,在△ABC中,外角DCA=100A=45.

  求B和ACB的度数.

  解:∵DCA=B(三角形的一个 外角等于和它不相邻的两个内角的和)

  DCA=100A=45(已知)

  DCA-A=100-45=55 (等式的性质)

  ∵DCA+ACB=180(1平角=180)

  ACB=180DCA(等式的性质)

  ∵DCA=100(已知)

  ACB=80(等量代换)

  ( 二)看课本 P199~200然后小结

  Ⅳ.课时小结

  本节课我们主要研究了三角形内角和定理的推论:

  推论1:三角形的一个外角等 于和它不相邻的两个内角的 和.

  推论2:三角形的一个外角大于任何一个和它不相邻的内角.

  在计算角的度数、证明两个角相等或角的和 差倍分时,常常用到三角形内角和定理及推论1.

  在几何中证明两角不等的定理只有推论2,所以遇到有证明角不等的题目一定要设法用到它去证明.

  Ⅴ.课后作业

  (一)课本P201习题6.7 1、2、3

  ●板书设计

  6.6 关注三角形的外角

  一、三角形的外角

  

  其特征 ②

  ③

  二、三角形内角和定理的推论:

  三角形的一个外角等于和它不相 邻的两个内角的和.

  三角形的一个外角大于任何一个和它不相邻的内角.

  三、例题

  例1例2

  四、课堂练习

【八年级数学教案关注三角形的外角】相关文章:

全等三角形的数学教案08-25

三角形的中位线八年级数学教案设计05-04

小学数学教案三角形面积(精选7篇)10-15

初中数学教案:全等三角形(通用10篇)05-21

小班数学教案认识三角形6篇05-09

三角形面积计算数学教案(通用7篇)07-12

八年级数学教案09-25

小班数学教案认识三角形锦集五篇05-10

八年级数学教案模板08-21

关注2013年高考07-10