关于空间几何体的表面积和体积数学教案
一.课标要求
了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向
近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用割补法等求解。
由于本讲公式多反映在考题上,预测008年高考有以下特色:
(1)用选择、填空题考查本章的基本性质和求积公式;
(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;
三.要点精讲
1.多面体的`面积和体积公式
名称
侧面积(S侧)
全面积(S全)
体 积(V)
棱
柱
棱柱
直截面周长l
S侧+2S底
S底h=S直截面h
直棱柱
ch
S底h
棱
锥
棱锥
各侧面积之和
S侧+S底
S底h
正棱锥
ch
棱
台
棱台
各侧面面积之和
S侧+S上底+S下底
h(S上底+S下底+)
正棱台
(c+c)h
表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式
名称
圆柱
圆锥
圆台
球
S侧
2rl
rl
(r1+r2)l
S全
2r(l+r)
r(l+r)
(r1+r2)l+(r21+r22)
4R2
V
r2h(即r2l)
r2h
h(r21+r1r2+r22)
R3
表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径。
四.典例解析
题型1:柱体的体积和表面积
例1.一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.
解:设长方体的长、宽、高、对角线长分别为xcm、ycm、zcm、lcm
依题意得:
由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)
【关于空间几何体的表面积和体积数学教案】相关文章: