- 相关推荐
等比数列教案教学示例
教学目标
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;
(3)通过通项公式认识等比数列的性质,能解决某些实际问题.
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.
教学建议
教材分析
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.
教学设计示例
课题:等比数列的概念
教学目标
1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,
②8,16,32,64,128,256,
③1,1,1,1,1,1,1,
④
-
243,81,27,9,3,1,
,
,
⑤31,29,27,25,23,21,19,
⑥1,-1,1,-1,1,-1,1,-1,
⑦1,-10,100,-1000,10000,-100000,
⑧0,0,0,0,0,0,0,
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).
二、讲解新课 请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列等比数列. (这里播放变形虫分裂的多媒体软件的第一步)
【等比数列教案教学示例】相关文章:
《北京》教学教案示例07-28
中班地震安全教案教学示例06-13
花钟说课教学教案示例08-06
好孩子教学教案设计示例09-18
盘古开天地教学教案示例09-30
越巫的教案示例06-17
Lesson 7的教案示例08-20
公开课等比数列教案最新07-25
综合实践教学总结示例09-27
鲸教案设计示例07-21