教案

全等三角形的判定课题教案

时间:2024-10-22 06:17:50 教案 我要投稿
  • 相关推荐

全等三角形的判定课题教案

  教学目标

全等三角形的判定课题教案

  1、知识目标:

  (1)熟记角边角公理、角角边推论的内容;

  (2)能应用角边角公理及其推论证明两个三角形全等.

  2、能力目标:

  (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

  (2)通过观察几何图形,培养学生的识图能力.

  3、情感目标:

  (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;

  (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

  教学重点:学会运用角边角公理及其推论证明两个三角形全等.

  教学难点:sas公理、asa公理和aas推论的综合运用.

  教学用具:直尺、微机

  教学方法:探究类比法

  教学过程

  1、新课引入

  投影显示

  这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 .

  2、公理的获得

  问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

  让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

  公理:有两角和它们的夹边对应相等的两个三角形全等.

  应用格式: (略)

  强调:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

  所以找条件归结成两句话:已知中找,图形中看.

  (3)、公理与前面公理1的区别与联系.

  以上几点可运用类比公理1的模式进行学习.

  3、推论的获得

  改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

  学生分析讨论,教师巡视,适当参与讨论.

  4、公理的应用

  (1)讲解例1.学生分析完成,教师注重完成后的总结.

  注意区别“对应边和对边”

  解:(略)

  (2)讲解例2

  投影例2 :

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书.教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论.

  (3)讲解例3(投影)

  例3已知:如图4△abc≌△a1b1c1,ad、a1d1分别是△abc和△a1b1c1的高.

  求证:ad=a1d1

  证明:(略)

  学生分析思路,写出证明过程.

  (投影展示学生的作业,教师点评)

  (4)讲解例4(投影)

  例4 如图5,已知:ac∥bd,ea、eb分别平分∠cab、∠dba而交cd于e.

  求证:ab=ac+bd

  证明:(略)

  学生口述过程.投影展示证明过程.

  学生思考、分析、讨论,教师巡视,适当参与讨论.

  师生共同讨论后,让学生口述证明思路.

  教师强调证明线段之间关系的常见方法:截长法或补短法.

  5、课堂小结:

  (1)判定三角形全等的方法:sas、asa、aas

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

  6、布置作业

  a书面作业p68#1、2、3

  b上交作业p71b组2

  思考题:

  如图,已知:ad是a的平分线,ab<ac,

  求证:ac-ab>oc-ob

  探究活动

  要测量河两岸相对的两点a、b的距离,可以在ab的垂线bf上取两点c、d,

  使cd=bc,再作bf的垂线de,使a、c、e在一条直线上,这时测得de的长就是ab的长,如图,写出已知、求证、并且进行证明.

【全等三角形的判定课题教案】相关文章:

直角三角形全等的判定教学教案09-16

三角形全等的判定教学计划08-25

全等三角形教案08-07

全等三角形的数学教案08-25

三角形相似的判定教案范文08-24

初中数学教案:全等三角形(通用10篇)05-21

九年级数学“全等三角形”专题训练题10-30

有关课题自然之道的教案09-03

《菱形判定》优秀教学设计07-24

产品生命周期阶段的判定08-20