- 相关推荐
《比例》公开课教案
比例
1、比例的意义和基本性质
第一课时
教学内容:P32~34
比例的意义和基本性质
教学目的:
1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。
3、使同学初步感知事物间是相互联系、变化发展的。
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把同学举的例子板书出来,并注明比的各局部的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。
12:16
:
4.5:2.7
10:6
同学求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5:
2.4:1.6
60:40
15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6
60:40=15:10
2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)
2
5
路程(千米)
80
200
指名同学读题。
教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问
边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”
根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6
35:7和45:9
20:5和16:8
0.8:0.4和0.3:0.6
同学判断后,指名说出判断的根据。
②做P33“做一做”。
让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。
③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。
2、教学比例的基本性质
(1)教学比例各局部的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各局部的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让同学指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各局部的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是 2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让同学分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个一起的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“假如把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
同学回答后,教师强调:假如把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80
)
2:7=(
):5
1.2:2.5=(
):4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1) 6:9和 9:12
(2)1.4:2 和 7:10
(3) 0.5:0 .2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。
2 、3 、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)假如3×a=5×b,那么5:a=3:b。
(2) : 和 : 中,能与 : 组成比例的是 : 。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
【《比例》公开课教案】相关文章:
《比例的意义》教学实录_《比例的意义》优秀教案比例的意义优质教案12-06
《比例的意义》教案12-02
推荐《比例的意义》教案06-01
《反比例》数学教案07-20
反比例函数初中教案04-02
正比例的意义教案设计04-02
社戏公开课教案03-29
《水》公开课教案04-01
《尊严》公开课的教案04-02