教案

相交线的教学教案

时间:2024-07-22 02:24:48 教案 我要投稿
  • 相关推荐

关于相交线的教学教案

  教学目标:

关于相交线的教学教案

  1.知识与技能:通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.

  2.过程与方法:在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,

  3情感态度与价值观:理解对顶角相等,并能运用它解决一些问题.

  教学重点:邻补角、对顶角的概念,对顶角性质与应用.

  教学难点:理解对顶角相等的性质的探索。

  教学器材: 多媒体教学电脑、演示用投影仪。

  教学时间:一课时

  教学过程:

  一、读一读,看一看

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

  学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线.

  本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、观察剪刀剪布的过程,引入两条相交直线所成的角

  教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?

  学生观察、思想、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

  教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.

  三、认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

  2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

  3.学生根据观察和度量完成下表:

  教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念.

  (1)师生共同定义邻补角、对顶角.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  (2)初步应用.

  练习1:下列说法,你同意吗?如果错误,如何订正.

  ①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.

  ②邻补角可看成是平角被过它顶点的一条射线分成的两个角.

  ③邻补角是互补的两个角,互补的两个角也是邻补角?

  5.对顶角性质.

  (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.

  (2)教师把说理过程,规范地板书:

  在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,

  类似地有∠

  AOC=

  ∠

  BOD.

  教师板书对顶角性质:对顶角相等.

  强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.

  (3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.

  四、巩固运用

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.

  2.练习:

  (1)课本P5练习.

  (2)补充:判断下列图中是否存在对顶角.

  五、作业

  1.课本P9.1,2,P10.7,8.

  2.选用课时作业设计.

  课时作业设计

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角.

  ()

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ()

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠

  BOC=_________.

  (1) (2)

  2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若∠AOC+∠BOD=100°,求各角的度数.

  (2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛

  2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

  课时作业设计答案:

  一、1.× 2.∨

  二、1.∠AOF,∠EOC与∠DOF,160 2.150

  三、1.(1)分别是50°,150°,50°,130° (2)分别是49°,131°,49°,131°.

  教学板书:

  5.1.1相交线

  概念性质 示意图

  邻补角如果两个角有一条公共边,并且他们的另一条边 邻补角互补 会为反向延长线,这样的两个角互为邻补角。

  对顶角如果两个角顶点相同,并且角的两边互为反向延长线,

  那么这两个角互为对顶角。 对顶角相等

  教学反思:

  出现问题是对顶角相等的推理过程及做题过程中的应用不太清楚;邻补角与补角的关系没有弄明白。课后我反思,这是由于讲课过程中,结合实物讲解的过程及时间较多,结合图形的推导过程较少。练习量不足所导致的。所以,重新以证明题的形式证明“对顶角相等”,结合图形分析邻补角与补角的包含关系。同时加大习题的练习量,反复纠错。

【相交线的教学教案】相关文章:

相交线与平行线单元测试题07-02

七年级数学《相交线》教学设计07-12

初一数学下册知识点:相交线与平行线(精选8篇)10-23

四年级《相交与垂直》教学设计05-07

斑马线小班教案09-20

小学数学线的认识教案10-10

流动的风景线美术教案范文09-06

陀螺上的点和线科学教案09-17

大班科学优秀教案《谁是那根线》08-10

关于线的世界的幼教中班数学教案07-12