教案

八年级数学《等腰三角形的判定》教案

时间:2024-07-19 21:13:18 惠嘉 教案 我要投稿
  • 相关推荐

八年级数学《等腰三角形的判定》教案(精选8篇)

  作为一名优秀的教育工作者,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。怎样写教案才更能起到其作用呢?下面是小编收集整理的八年级数学《等腰三角形的判定》教案,仅供参考,希望能够帮助到大家。

八年级数学《等腰三角形的判定》教案(精选8篇)

  八年级数学《等腰三角形的判定》教案 篇1

  重点与难点分析:

  本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

  本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

  教法建议:

  本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

  (2)采用“类比”的学习方法,获取知识。

  由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的'结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

  (3)总结,形成知识结构

  为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

  一.教学目标:

  1.使学生掌握等腰三角形的判定定理及其推论;

  2.掌握等腰三角形判定定理的运用;

  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  4.通过自主学习的发展体验获取数学知识的感受;

  5.通过知识的纵横迁移感受数学的辩证特征.

  二.教学重点:等腰三角形的判定定理

  三.教学难点:性质与判定的区别

  四.教学用具:直尺,微机

  五.教学方法:以学生为主体的讨论探索法

  六.教学过程:

  1、新课背景知识复习

  (1)请同学们说出互逆命题和互逆定理的概念

  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

  (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

  1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

  (简称“等角对等边”).

  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  已知:如图,△ABC中,∠B=∠C.

  求证:AB=AC.

  教师可引导学生分析:

  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

  2.推论1:三个角都相等的三角形是等边三角形.

  推论2:有一个角等于60°的等腰三角形是等边三角形.

  要让学生自己推证这两条推论.

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

  3.应用举例

  例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求证:AB=AC.

  证明:(略)由学生板演即可.

  补充例题:(投影展示)

  1.已知:如图,AB=AD,∠B=∠D.

  求证:CB=CD.

  分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

  小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

  2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

  分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

  证明: DE//BC(已知),

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小结:

  (1)等腰三角形判定定理及推论.

  (2)等腰三角形和等边三角形的证法.

  七.练习

  教材 P.75中1、2、3.

  八.作业

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板书设计

  更多内容了解,请关注应届毕业生考试网。

  八年级数学《等腰三角形的判定》教案 篇2

  一、教学内容

  本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。

  教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。

  二、教材编写特点和教学建议

  1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。

  空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。

  (1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。

  学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。

  (2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:

  通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。

  例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。

  (3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:

  第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的'角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。

  2、从已有经验中提炼数学概念。

  在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。

  (1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:

  第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”P25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。

  (2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。

  教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如P27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的特征。

  3、从特殊到一般,通过实验得出三角形的内角和是180°。

  让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。

  (1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。

  首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。

  (2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如P29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。

  4、注意三角形知识的内在联系

  三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在P31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。P33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。

  5.注意培养学生的空间观念

  观察、举例、做图形感受三角形

  在P22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,P23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。

  学生在看、围、折、剪等活动中获得各类三角形特征的直接体验

  在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在P27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的三角形,才能有不同的分法。这些都有利于空间观念的发展。

  让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象

  同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如P30、P31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;P31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。

  八年级数学《等腰三角形的判定》教案 篇3

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的含义。

  教学重点

  等腰三角形的关性质定理和判定定理。

  教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、等腰三角形性质的探究

  1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

  2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

  3.分别演示:

  ∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

  4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

  5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

  6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

  7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

  8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

  9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

  10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

  11.小结这两个课时的内容。

  作业:

  同步练习

  板书设计:

  1.积极思考,回忆以前所学知识,联想新问题。

  2.认真观看例1图形中线段的关系,积极思考,认真听讲。

  3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

  4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

  5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

  6.认真听讲,在掌握结论的同时受到老师的.鼓励,有很高的热情进行后续学习。

  7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

  8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

  9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

  10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

  11.体会老师的讲解,并根据小结记忆掌握知识。

  (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

  八年级数学《等腰三角形的判定》教案 篇4

  教学目标

  1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学重点

  了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学方法

  观察法

  教学后记

  教学内容及过程学生活动

  一、复习:

  1、什么是等腰三角形?

  2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

  3、试用折纸的办法回忆等腰三角形有哪些性质?

  二、新课讲解:

  之前,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

  同学们和我一起来回忆上学期学过的公理:

  1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

  2、两条平行线被第三条直线所截,同位角相等;

  3、两边夹角对应相等的两个三角形全等;(SAS)

  4、两角及其夹边对应相等的两个三角形全等;(ASA)

  5、三边对应相等的两个三角形全等;(SSS)

  6、全等三角形的对应边相等,对应角相等。

  由公理5、3、4、6可容易证明下面的推论:

  推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)

  证明过程:

  已知:∠A=∠D,∠B=∠E,BC=EF

  求证:△ABC≌△DEF

  证明:∵∠A=∠D,∠B=∠E(已知)

  ∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)

  ∠C=180°—(∠A+∠B)

  ∠F=180°—(∠D+∠E)

  ∠C=∠F(等量代换)

  BC=EF(已知)

  △ABC≌△DEF(ASA)

  这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

  三、议一议:

  (1)还记得我们探索过的等腰三角形的性质吗?

  (2)你能利用已有的公理和定理证明这些结论吗?

  等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。

  定理:等腰三角形的两个底角相等。

  这一定理可以简单叙述为:等边对等角。

  已知:如图,在ABC中,AB=AC。

  求证:∠B=∠C

  证明:取BC的中点D,连接AD。

  ∵AB=AC,BD=CD,AD=AD,

  ∴△ABC△≌△ACD(SSS)

  ∴∠B=∠C(全等三角形的对应边角相等)

  四、想一想:

  在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?

  应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。

  推论等腰三角形的`顶角的平分线、底边上的中线、底边上的高互相重合。

  五、随堂练习:

  做教科书习题第1,2题。

  六、课堂小结:

  通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。

  七、课外作业:

  同步练习

  板书设计:

  这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

  学生充分讨论问题1,借助等腰三角形纸片回忆有关性质

  让学生尽可能回忆出来,然后再考虑哪些能够立即证明

  让同学们通过探索、合作交流找出其他的证明方法

  学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。

  八年级数学《等腰三角形的判定》教案 篇5

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

  教学重点

  等边三角形的判定定理和直角三角形的性质定理。

  教学难点

  能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、定理:一个角等于60°的等腰三角形是等边三角形

  1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

  2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

  3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

  二、一种特殊直角三角形的性质

  1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

  2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

  3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

  4.让学生准备一张正方形纸片,按要求动手折叠。

  5.讲解例题,应用定理。

  6.布置学生做练习。

  练习:课本随堂练习1

  三、课堂小结:

  通过这节课的学习你学到了什么知识?了解了什么证明方法?

  四、作业:同步练习

  板书设计:

  1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

  2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的`情况。

  3.认真听讲,体会分类讨论的数学思维方法,理解定理。

  1.积极动手操作,并很快得到结果:可以拼出等边三角形。

  2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

  3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

  4.很有兴趣地折叠纸片,体会定理的应用。

  5.听讲,体会定理的应用。

  6.认真做练习。

  (学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

  八年级数学《等腰三角形的判定》教案 篇6

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.

  本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.

  2、教法建议

  没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:

  (1)强化能力

  新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.

  通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力

  (2)主动获取

  在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第

  一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维

  由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段,( ),若第三条线段c满足- c则线段, ,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.

  (4)加深理解

  进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据.

  整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.

  教学目标:

  (1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;

  (2)弄清三角形按边的相等关系的分类;

  (3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;

  (4)通过三角形三边关系定理的学习,培养学生转化的能力;

  (5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.

  教学重点:三角形三边关系定理及推论

  教学难点:三角形按边分类及利用三角形三边关系解题

  教学用具:直尺、微机

  教学方法:谈话、探究式

  教学过程:

  1、阅读新课,回答问题

  先让学生阅读教材的第一部分,然后回答下列问题:

  (1)这一部分教材中的数学概念有哪些?(指出来并给予解释)

  (2)等腰三角形与等边三角形有什么关系?

  估计有的学生可能把等腰三角形和等边三角形看成独立的两类.

  (3)写出三角形按边的相等关系分类的情况.

  教师最后板书给出.

  (要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)

  2、发现并推导出三边关系定理

  问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)

  问题2:你能解释上述结果的原因吗?

  问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?

  定理:三角形两边的和大于第三边

  (发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)

  3、导出三边关系定理的推论及其它两种方法

  由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:

  估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.

  推论:三角形两边的差小于第三边

  (给每一个学生表现个人数学语言表达才能的机会)

  能否简化上面定理及推论?从而得到如下两种判定方法:

  (1)、已知线段,( ),若第三条线段c满足- c则线段, ,c可组成一个三角形.

  4、三角形三边关系定理及推论的应用

  例1判断题:(出示投影)

  (1)等边三角形是等腰三角形

  (2)三角形可分为不等边三角形、等腰三角形和等边三角形

  (3)已知三线段满足,那么为边可构成三角形

  (4)等腰三角形的腰比底长

  (本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)

  (本例要求学生说出解题思路,教师点到为止)

  例3一个等腰三角形的周长为18 .

  (1)已知腰长是底边长的2倍,求各边长.

  (2)其中一边长4,求其他两边长.

  这是一道有课堂练习性质的`例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.

  (数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)

  例4草原上有4口油井,位于四边形ABCD的4个顶点,

  如图1现在要建一个维修站H,试问H建在何处,

  才能使它到4口油井的距离HA+HB+HC+HD为最小,

  说明理由.

  本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.

  5、小结

  本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:

  (1)判断三条已知线段能否组成三角形

  采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.

  (2)确定三角形第三边的取值范围

  两边之差<第三边<两边之和

  若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.

  6、布置作业

  a.书面作业P41#8、9

  b.思考题:1、在四边形ABCD中,AC与BD相交于P,求证:

  (AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad< p="">

  2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)

  八年级数学《等腰三角形的判定》教案 篇7

  今天我说课的内容是人教版初中数学八年级上册第十二章第三节“等腰三角形”第二课时的内容:“等腰三角形的判定”,我将围绕教材分析、教法分析、学法分析、教学过程、板书设计说个方面来进行说课。

  一、 说教材分析

  1、本节课的地位与作用

  等腰三角形的判定是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材承上启下、至关重要。

  2、教学目标:

  根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征.我将本节的教学目标设计为三个方面:

  知识与技能:会阐述、证明等腰三角形的判定定理。

  过程与方法:学会比较等腰三角形性质定理和判定定理的联系与区别。

  情感态度与价值观:经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

  3、教学重点:等腰三角形的判定定理的探索和应用。

  4、教学难点:等腰三角形的判定与性质的区别。

  5、教具准备:作图工具和多媒体课件。

  二、 说教法分析

  新课程理念强调我们的课程不仅是文本课程,更是体验课程,它不再是知识的载体,而是教师和学生共同探究新知的过程;使教学成为一种对话、交往,一种沟通,合作与共建。教师不仅要传授知识,更要与学生一起分享对课程的理解。因此,本节课我主要采用两种教法:

  1、引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

  2、情景教学法:数学课程的特点之一是内容抽象,而多媒体在数学教学中的应用可以较好的解决这个难题。我在教学中充分运用远教资源中的媒体资源设计出可视的图形运动轨迹,帮助学生理解教材意图。

  三、说学法分析

  本节课按照质疑、猜想、验证的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,也体现了数学源于生活,而又服务于生活的基本理念。本节课将着力培养学生的.实践探究能力、合作交流和抽象概括能力。

  四、说教学过程

  我现将本节课的教学目标展示给学生,让学生做到心中有数,再展示出自学指导,让学生带着问题看书,加强自主探索的能力。

  本节课的教学过程分为创设情境——激发兴趣、提出问题——大胆猜想、讨论交流——探索分析、科学引导——得出结论、反馈教学——加深理解、拓展延伸——综合运用六大教学版块。

  1、创设情境——激发兴趣

  我结合课本中的实际问题引入课题,并出示大屏,展示这一实际问题,再结合形象的图形展示给学生。“如图,位于在海上A、B两处的两艘救生船接到O处的遇险报警,当时测得∠A=∠B。如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?” 通过学生观察、思考,产生悬念,使学生从生活走进数学,自然地渗透数学来源于生活的思想。

  2、提出问题——大胆猜想

  我首先引导学生将实际问题转化为数学问题,即:在一个三角形中,如果有两个角相等,那么他们所对的边有什么关系? 通过问题的提出,引导学生写出已知、求证,并根据已知条件画出图形。

  3、讨论交流——探索分析

  然后我设计了一个学生活动,让学生画一个有两个角相等的三角形。在教学中,我引导学生自己选择不同的方法来观察,通过他们实际动手折叠与测量,学生不难结合前面所学的知识发现两边的关系,看它的两条边有什么关系?再引导他们分组讨论、交流和分析,应该采用什么方法来判断它?说一说你的想法?

  4、科学引导——得出结论

  在教学中,我针对学生的讨论情况,结合教材实际,引用了远教资源中的媒体展示,让学生更加直观形象的感知这一过程,再引导学生通过两种方法来解决问题,方法一:过点A作AD平分∠A得到∠1=∠2 ,从而推出△ABD≌ △ACD,证明AB=AC。方法二:过点A作AD⊥BC得到∠ADC=∠ADB,从而推出△ABD≌ △ACD,证明AB=AC。通过两种不同方法的推证,我再引导学生用数学语言来总结这一规律,针对学生的发言进行点评,给出提示,达成共识后得到结论。

  5、反馈教学——加深理解

  在学生得出这一结论之后,我再给出课前提出的救生船问题,让学生运用所学知识反馈于教学,用数学知识来解决生活中的实际问题,此时,学生就不难发现两行船将同时到达O点,同时我用了一道典型例题,本题也是课本中的例2,旨在考查学生对平行线性质定理和等腰三角形判定定理的综合运用,以进一步加深学生对等腰三角形判定定理的理解和运用。

  6、拓展延伸——综合运用

  这一题型的设计将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考,勇于探索。

  7、课堂小结

  在小结部分,我提出两个问题:一是学到了什么知识?二是这个知识有什么作用。通过问题的设计引导学生归纳出学习内容。

  五、说板书设计

  本节课的板书设计,主要围绕等腰三角形的判定定理的探索和归纳来展开教学。

  说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力

  八年级数学《等腰三角形的判定》教案 篇8

  一、教案背景

  1、面向学生:初中 学科:数学

  2、课时:1

  3、学生课前准备:

  (1)回忆等腰三角形的有关性质

  (2)等腰三角形纸片

  (3)完成课后习题

  二、教学课题

  课题:等腰三角形的性质与判定

  (1) 课堂活动以学生为主体,教师为主导,重点放在如何调动学生的积极性,让学生观

  察、分析、归纳概括,主动获得知识。

  (2) 组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

  (3) 在教学中,向学生渗透数学思想方法,培养学生说理的能力。

  三、教材分析:

  1、 等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

  2、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

  3、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

  4、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

  5、 如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

  6、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

  7、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

  8、 课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

  四、教学方法

  本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的.主体意识。

  五、教学过程

  教学目标:

  1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

  2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

  3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

  教学重点:等腰三角形的性质与判定定理的证明

  教学难点:证明过程的书写格式,用规范的符号语言描述证明过程

  教学媒体:多媒体

  六、教学过程:

  (一)回顾知识

  1、什么叫证明?什么叫定理?

  2、证明与图形有关的命题,一般步骤有哪些?

  3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?

  设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流

  (二)创设情境

  观察图片

  百度图片搜索_等腰三角形金字塔的搜索结果

  1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?

  2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?

  3、上述性质你是怎么得到的?(不妨动手操作做一做)

  4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

  (三)探索活动

  1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

  2、思考与讨论:说明你所画的是顶角的平分线。

  怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

  3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

  定理:等腰三角形的两个底角相等,(简称:“等边对等角”)

  等边对等角_百度百科

  设计说明:引导学生动手操作,让学生真正成为学习的主人,教师是数学学习的引导者,教师引导学生思考探究,逐步尝试运用说理的方式进行说明,教师引导学生,文字语言,

  图形语言和几何语言间的互相转换。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C

  定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”)

  4、你能写出上面定理的符号语言吗?

  5、总结

【八年级数学《等腰三角形的判定》教案】相关文章:

《菱形判定》优秀教学设计07-24

八年级数学教案09-25

三角形相似的判定教案范文08-24

等腰三角形教案(通用10篇)07-15

八年级数学教案模板08-21

产品生命周期阶段的判定08-20

八年级数学教案15篇10-22

人教版初中八年级数学教案08-10

直角三角形全等的判定教学教案09-16

八年级数学教案(通用20篇)09-07