高考数学试题解题技巧大全归纳
在学习和工作中,我们经常跟试题打交道,试题是考核某种技能水平的标准。大家知道什么样的试题才是好试题吗?以下是小编收集整理的高考数学试题解题技巧大全归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。
高考数学试题解题技巧大全归纳1
一、三角函数题
注意归一公式、诱导公式的准确性(生成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;标记看象限)时,很容易因为粗心,造成失误。一着不慎,满盘皆输。)。
二、数列题
1、证实一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公役(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般思考用放缩法;假如两头都是含n的式子,一般思考数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假定,否则不正确。
利用上假设后,怎样把目前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用目前的式子减去目标式子,看标记,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,运用函数单调性非常简单(因此要有结构函数的观念)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简易;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范畴)和所求角的余弦值(范畴)的关系(标记问题、钝角、锐角问题)。
高考数学试题解题技巧大全归纳2
一、调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
六、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
七、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。
八、面对难题,讲究方法,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
九、以退求进,立足特殊。
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。
十、执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的'进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
十一、回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
十二、应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景
高考数学试题解题技巧大全归纳3
一、数形结合法
高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。
数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”
这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。
根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。
二、排除解题法
排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。
排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”
当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。
【高考数学试题解题技巧大全归纳】相关文章:
高考数学试题的解题技巧09-14
高考数学试题的解题技巧参考08-30
小升初数学试题精选归纳09-18
数学试题大全08-31
重点初中小升初数学试题归纳09-18
小升初数学试题大全09-16
高考数学试题选集09-11
2017初中数学试题大全09-15
福建高考数学试题点评09-11
解答高考数学试题的策略11-12