高考 百分网手机站

高考数学题型归纳及选择题答题技巧

时间:2020-08-12 11:18:05 高考 我要投稿

2017高考数学题型归纳及选择题答题技巧

  学习数学需要讲究方法和技巧,用对方法做什么事情都会事半功倍。以下是百分网小编搜索整理的关于2017高考数学题型归纳及选择题答题技巧,供参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!

2017高考数学题型归纳及选择题答题技巧

  2017新课标高考数学题型归纳

  一、排列组合篇

  1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

  2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

  3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

  4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

  5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

  6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

  7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

  8. 会计算事件在n次独立重复试验中恰好发生k次的概率.

  二、立体几何篇

  1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的`总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2. 判定两个平面平行的方法:

  (1)根据定义--证明两平面没有公共点;

  (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

  (3)证明两平面同垂直于一条直线。

  三、数列问题篇

  1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

  2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

  3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

  四、导数应用篇

  1. 导数概念的理解。

  2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

  3. 要能正确求导,必须做到以下两点:

  (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

  (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

  五、解析几何(圆锥曲线)

  1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

  2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

  高考数学选择题答题技巧

  1直接法

  直接从题设条件出发,运用有关,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法。是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法。

  2、排除法

  从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法。排除法常常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止。

  3、特例法

  根据题设和各选项的具体情况和特点,选取满足条件的特殊的数值、特殊的集合、特殊的点、特殊的图形或者特殊的位置状态,代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而得到正确的判断的方法称为特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.

  4、数形结合法

  数形结合就是把抽象的数学语言与直观的图形结合起来思考,也就是使抽象思维和形象思维有机结合,通过“以形助数”或“以数解形”,达到使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

  5、代入法