- 相关推荐
PID算法的C语言实现
积分饱和通俗讲就是系统在一个偏差方向上的饱和,下面一起来跟着小编学习一下PID算法的C语言实现方法吧,希望可以帮助到大家!
比如一个系统设定了输出不会超过100,但因为出现一个方向上的偏差积分使得输出超过了100,此时达到了饱和状态,如果继续在这个方向上积分会导致PID控制超过100系统却运行在100,相当于积分调节对系统输出没有作用,就出现失控的状态,这是系统不能接受的,而且饱和积分越深,退出饱和就越久。上面是在正向的饱和,负向的饱和类似!
为了解决这个问题,我们采用抗积分饱和算法,其思路就是:如果上一次的输出控制量超过了饱和值,饱和值为正,则这一次只积分负的偏差,饱和值为负,则这一次只积分正的偏差,从而避免系统长期留在饱和区!
下面我以 位置型+抗积分饱和+积分分离的PID控制算法C语言来观察调节结果:(相对应的代码可以参考以往的文章)
//位置型+抗积分饱和+积分分离 PID控制算法
struct _pid{
float SetSpeed;
float ActualSpeed;
float Err;
float Err_Last;
float Kp,Ki,Kd;
float Voltage;
float Integral;
float Umax; //最大正饱和上限值
float Umin; //最大负饱和下限值
}pid;
void PID_Init(void)
{
printf("PID_Init begin! ");
pid.SetSpeed = 0;
pid.ActualSpeed = 0;
pid.Err = 0;
pid.Err_Last = 0;
pid.Kp = 0.2;
pid.Ki = 0.1; //增大了积分环节的值
pid.Kd = 0.2;
pid.Voltage = 0;
pid.Integral = 0;
pid.Umax = 400; //正饱和值为400
pid.Umin = -200; //负饱和值为-200
printf("PID_Init end! ");
}
float PID_Cal(float Speed)
{
unsigned char index;
pid.SetSpeed = Speed;
pid.Err = pid.SetSpeed - pid.ActualSpeed;
if(pid.ActualSpeed>pid.Umax) //如果上一次输出变量出现正向的饱和
{
if(abs(pid.Err)>200)
{
index = 0;
}
else
{
index = 1;
if(pid.Err<0)
{
pid.Integral += pid.Err; //正饱和只积分负偏差
}
}
}
else if(pid.ActualSpeed {
if(abs(pid.Err)>200)
{
index = 0;
}
else
{
index = 1;
if(pid.Err>0)
{
pid.Integral += pid.Err; //负饱和只积分正偏差
}
}
}
else
{
if(abs(pid.Err)>200) //积分分离的PID优化,可参考以往的文章
{
index = 0;
}
else
{
index = 1;
pid.Integral += pid.Err;
}
}
pid.Voltage = pid.Kp*pid.Err +index*pid.Ki*pid.Integral + pid.Kd*(pid.Err - pid.Err_Last);
pid.Err_Last = pid.Err;
pid.ActualSpeed = pid.Voltage*1.0;
return pid.ActualSpeed;
}
int main(void)
{
int count = 0 ;
printf("SYSTEM BEGIN! ");
PID_Init();
while(count<1000)
{
float speed = PID_Cal(200.0);
printf("-%d-%f-",count,speed);
count++;
}
return 0;
}
最后运行结果:
我们发现,相对以往的算法,还算法大大提高了调节的速度和稳定!
【PID算法的C语言实现】相关文章:
C语言实现归并排序算法实例04-01
C语言程序的实现09-27
C语言的HashTable简单实现04-01
C#实现协同过滤算法的实例代码11-30
如何实现C语言画图教程04-01
最常用的c语言算法有哪些12-05
C++实现自底向上的归并排序算法12-03
C语言选择排序算法及实例代码11-25
10个经典的C语言面试基础算法及代码12-05