化学

化学仪器的分析与区别

时间:2021-06-21 15:19:30 化学 我要投稿

化学仪器的分析与区别

  化学分析

化学仪器的分析与区别

  利用物质的化学反应为基础的分析,称为化学分析。化学分析历史悠久,是分析化学的基础,又称为经典分析。化学分析是绝对定量的,根据样品的量、反应产物的量或所消耗试剂的量及反应的化学计量关系,通过计算得待测组分的量。而另一重要的分析方法仪器分析(instrument analysis)是相对定量,根据标准工作曲线,估计出来。

  简介

  分析化学是大学本科的主干基础课,包括“定量化学分析”理论课、实验课和“仪器分析”理论课、实验课。授课对象为化学类专业和生物、医学、地学类专业的本科生。分析化学有很强的实用性,同时又有严密、系统的理论,是理论与实际密切结合的学科。学习分析化学有利于培养学生严谨的科学态度和实事求是的作风,使学生初步掌握科学研究的技能并初步具备科学研究的综合素质。分析化学涉及的内容十分广泛,发展非常迅速。在讲授基本理论的同时,尽量穿插一些运用基础理论解决实际问题的例子,包括药物、环境、生物等各个领域中分析化学的新进展,新成果。保持化学分析理论的系统性并不断充实新内容,保持仪器分析内容的相对稳定性并及时融进新发展、新技术,将经典分析化学与现代分析化学融合在一起。

  分类

  化学分析根据其操作方法的不同,可将其分为滴定分析(titrimetry)和重量分析(gravimetry)。

  (1)滴定分析 根据滴定所消耗标准溶液的浓度和体积以及被测物质与标准溶液所进行的化学反应计量关系,求出被测物质的含量,这种分析被称为滴定分析。也叫容量分析(volumetry)。利用溶液4大平衡:酸碱(电离)平衡、氧化还原平衡、络合(配位)平衡、沉淀溶解平衡。 滴定分析根据其反应类型的不同,可将其分为:

  (a)酸碱滴定法:测各类酸碱的酸碱度和酸碱的含量;

  (b)氧化还原滴定法:测具有氧化还原性的物质;

  (c)络合滴定法:测金属离子的含量;

  (d)沉淀滴定法:测卤素和银。

  (2)重量分析 根据物质的化学性质,选择合适的化学反应,将被测组分转化为一种组成固定的沉淀或气体形式,通过钝化、干燥、灼烧或吸收剂的吸收等一系列的处理后,精确称量,求出被测组分的含量,这种分析称为重量分析。

  历史

  在19世纪无机化学知识逐渐系统化的时候,贝里采乌斯(Jns Jakob Berzelius)分析天平的发明和使用,使测量得到的实验数据更加接近真实值,这样任何一个定律都有一个确凿的事实证明.贝里采乌斯把测定原

  子量的很多新方法,新试剂,新仪器引用到分析化学中来,使定量分析精确度达到了一个新的高度.而后来人们都尊称他为分析化学之父. 在定性分析方面,1829年德国化学家罗斯(Hoiich Rose)编写了一本《分析化学教程》,首次提出了系统定性分析方法.这与目前通用的分析方法已经基本相同了.而到18世纪末,酸碱滴定的各种形式和原则也基本确定. 而对于分析化学的一个重要部分光谱分析,则是从牛顿开始的.牛顿从1666年开始研究光谱,并于1672年发表了他第一篇论文《光和色的新理论》。从此,观察和研究光谱的人也越来越多,观测的技术也越来越高明.而在1825年英国物理学家包特(Talbot)制造了一种研究光谱的仪器,对碱金属火焰进行研究,发现了元素有特征光谱的现象.后来德国科学家本生(Bunsen)与基尔霍夫(Kirchhoff)利用本生灯发现了元素铯和铷.光谱学作为分析化学的一个重要分支从此诞生. 进入20世纪之后,随着科学技术和工业的发展,新的分析方法--仪器分析产生了,包括吸光光度法,发射光度法,极谱分析法,放射分析法,红外光谱,紫外可见光光谱,核磁共振等现代化分析方法.这些分析方法超越了经典分析方法的局限,灵敏度可以达到很高的水平. 目前分析化学还处于第三次变革,这意味着分析化学不再局限于测定物质的组成和含量,而还要对物质的状态,结构,微区,薄层和表面的组成与结构以及化学行为和生物活性等到做出瞬时的追踪,无损的和在线监测等分析及过程控制.甚至是要求直接观察原子或分子形态和排列.

  仪器分析

  仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。 仪器分析方法所包括的分析方法很多,目前有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。

  学科简介 英文:instrument analysis

  仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的`化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法。

  仪器分析的分析对象一般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度高;而化学分析一般是半微量(0.01-0.1g)、常量(>0.1g)组分的分析,准确度高。

  发展历程

  概述

  经过19世纪的发展,到20世纪20~30年代,分析化学已基本成熟,它不再是各种分析方法的简单堆砌,已经从经验上升到了理论认识阶段,建立了分析化学的基本理论,如分析化学中的滴定曲线、滴定误差、指示剂的作用原理、沉淀的生成和溶解等基本理论。

  20世纪40年代以后,一方面由于生产和科学技术发展的需要,另一方面由于物理学革命使人们的认识进一步深化,分析化学也发生了革命性的变革,从传统的化学分析发展为仪器分析。

  不同分析法

  现代仪器分析涉及的范围很广,其中常用的有光学分析法、电化学分析法和色谱法。光学分析法是基于人们对物质光谱特性的认识而发展起来的一种分析测定方法。17世纪牛顿将白光分成了光谱以后,科学家对光谱进行了研究。19世纪前半期,人们已经把某一特征谱线和某种物质联系了起来,并提出了光谱定性分析的概念。在此基础上,德国化学家本生和物理学家基尔霍夫合作设计并制造了第一台用于光谱分析的光谱仪,实现了从光谱学原理到光谱分析的过渡,产生了一种新的分析方法即光谱分析法。19世纪后半期,人们又对光谱定量分析的可能性进行了探讨。1874年,洛克厄通过大量实验得出结论,认为光谱定量分析只能依据光谱线的强弱。到20世纪,用光电量度法测定了光谱线的强度,后来,光电倍增管被应用于光谱定量分析。与此同时,光谱分析中的另一种方法即利用物质的吸收光谱的吸收光度法,也得到了发展。

  电化学分析法是利用物质的电化学性质发展起来的一种分析方法。

  电重量分析法

  首先兴起的是电重量分析法。美国化学家吉布斯把电化学反应应用于分析化学中,用电解法测定铜,后来这种方法被广泛应用于生产中。电重量分析法存在着耗时长、易氧化等缺点,化学家在研究中把物质的电化学性质与容量分析法结合起来,发展了一种新方法,这就是电容量分析法。电容量分析法中发展较早的是电位滴定法,其后,极谱分析法和库仑分析法也相继发展起来。

  色谱分析法

  色谱分析法是基于色谱现象而发展起来的一种分析方法。1906年,俄国植物学家茨维特认识到所谓色谱现象和分离方法有密切联系,而且对分离有重大意义。他用这种方法分离了植物色素,并系统地研究了上百种吸附剂,奠定了色谱分析法的基础。20世纪30年代,具有离子交换性能的合成树脂问世,解决了一系列疑难问题,提高了色谱分离技术。由于单纯的分离意义不大,20世纪50年代,人们开始将分离方法和各种检测系统联接起来,分离分析同时进行,于是人们设计和制造了大型色谱分析仪。除了上述的方法以外,现代仪器分析法还有磁共振法、射线分析法、电子能谱法、质谱法等等。

  仪器分析

  仪器分析是根据被测组分的某些物理的或物理化学的特性,如光学的、电学的性质,进行分析检测的方法,因此,它实际上已经超出了化学分析的范围和局限,成为生产和科学各个领域的工具。

  分析化学中的分析是分离和测定的结合,分离和测定是构成分析方法的两个既相独立又相联系的基本环节。分离是使物质纯化的一种手段,而纯化的背后是物质的不纯,是物质具有混合性。我们知道,化学家所说的物质,指的是物质本身,是某种单质或化合物。这里所说的物质本身,意思是以纯粹的形式存在的物质,没有其他物质混合于其中的物质,也就是人们通常所说的纯物质。可是,无论是天然存在的还是人工制造的物质,都不是绝对纯的,绝对纯是达不到的,绝对纯只能在理论中或思想上存在。因此,在化学分析中,首先遇到的矛盾就是纯与不纯的矛盾

  基本途径

  分离是纯化物质的一种手段。分离一般有两条基本途径:一条是将所要分析的物质从混合物中提取出来,另一条则是将杂质提取出来。这两条途径是同一原理的两种不同的实现方式,它们互为正反,互为表里。在分析化学发展的历史中,产生了许多分离方法。在古代,在酿造业中应用了蒸馏、结晶等分离手段;在近代,产生了各种各样的分离方法,如沉淀分离、溶剂萃取分离、离子交换分离、电解分离等。分离是有限度的。有些混合物由于性质非常相似,分离非常困难,如果不分离,共存的组分又互相干扰。在化学分析中,常常从分离操作中演变出其他方法,如掩蔽方法。

  在仪器分析的发展史上,试样和试剂有不同的发展形式和内容。在早期,需要分析的是自然物,如矿石和植物,这些就是试样,而与其发生作用,从而进行鉴别的主要是火。后来,被分析的是溶液,与之发生变化的也是溶液,这时,试样和试剂都是溶液。人们最早使用的试剂是一种叫五倍子的植物浸液,被用于测定矿泉水中的铁。随着实践和认识的发展,大量植物浸液应用于化学分析之中,形成了天然植物试剂系列。在应用天然试剂的过程中,人们也在研究如何制备化学试剂。世界上第一个人工制备的分析化学试剂是黄血盐溶液,由此开创了化学试剂的新领域,拓宽了分析化学的研究范围。

  创新变革

  随着生产、生活和科学的发展,作为被分析的试样,其外延扩大了,从单一的自然物发展为自然物和人工产物。试样的内涵深化了,要求分析的内容不再局限于物质的定性组成,还要求分析各组分的含量。与此同时,试剂的种类越来越多,应用范围也越来越广。一种试样可以用多种试剂进行分析,一种试剂也可用于分析多种试样,同时还产生了类似于系统分析中组试剂的一般性试剂。在当代,被分析的试样既有各类混合物,也有一些纯净的化合物,既要求进行元素分析,还要求进行结构分析、生物大分 子的测定等等。试剂也有很大发展,应用于分析化学的试剂,有各种物理化学试剂、有机试剂和生化试剂,还研究和制备了一系列相对于某种分析方法的专用试剂、特效试剂和特殊试剂。

  在分析过程中,又产生了一种关系,这就是灵敏度和准确度的关系。灵敏度是被测组分浓度或含量改变一个单位所引起的测量信号的变化。若考虑分析时存在噪声等因素,灵敏度实际上就是被测组分的最低检出限。准确度是测量值的可靠程度,实质上是测量值与真值的接近程度,一般用误差来表示。在分析中,既要求分析方法具有一定的灵敏度,又要求具有一定的准确度。就具体的分析方法来说,灵敏和准确常常发生矛盾。有的分析方法有较高的准确度,却不够灵敏;有的分析方法灵敏度较高,但却不够准确。前者如重量分析法,后者如比色分析法。现代科学技术的发展,要求高准确度和高灵敏度,现代仪器分析正是适应这种要求而发展起来的。在分析化学发展的初期,人们只是在实践中掌握了一些简单的分析、检验方法,当时既没有化学理论,也没有分析方法的理论。随着分析、检验实践的进步和发展,各种分析和检验方法被应用于生产、生活和科学研究之中,并对这些方法进行了概括和总结,形成了分析化学理论,分析化学才真正成为一门科学。

  在仪器分析的发展中,理论和方法的相互作用,需要中介和桥梁,这就是技术。理论要起指导作用,要转化为方法,需要特定的仪器、设备和试剂。而制作和使用仪器或工具,正是通常所说的技术的特点。例如,光谱学原理早在牛顿时期就已初步形成,到18世纪已经发展成熟,利用光谱线特征进行物质的鉴定的思想也已有人提出,但是,直到19世纪中期,才实现了光谱分析。其原因在于,到这个时候,才应用光谱学原理制作出了可用于分析的光谱仪。技术是实现和实施方法的保证,仪器分析方法尤其如此。

  基本特点

  1、灵敏度高:大多数仪器分析法适用于微量、痕量分析。例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g。电子光谱甚至可达10-18g,相对灵敏度可在??-1,ng?-1乃至更小。

  2、取样量少:化学分析法需用10-1~10-4g;仪器分析试样常在10-2~10-8g。

  3、在低浓度下的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~10%。

  4、快速:例如,发射光谱分析法在1min内可同时测定水中48个元素,灵敏度可达ng?-1级。

  5、可进行无损分析:有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。有的方法还能进行表面或微区(直径为?级)分析,或试样可回收。

【化学仪器的分析与区别】相关文章:

谈分析化学中的化学分析与仪器分析03-25

化学仪器使用方法07-10

基础与地基的区别分析03-17

化学常用仪器使用方法07-12

高中化学仪器知识要点归纳12-08

化学实验中加热仪器的知识讲解03-02

化学试卷分析03-25

初中化学其他仪器知识点03-01

分析化学试卷03-25