高考数学知识点总结必备15篇
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,通过它可以正确认识以往学习和工作中的优缺点,不如立即行动起来写一份总结吧。那么你真的懂得怎么写总结吗?下面是小编整理的高考数学知识点总结,希望对大家有所帮助。
高考数学知识点总结1
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d 5、d 二、圆和圆的位置关系,还可用有无公共点来判断: 1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。 2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。 3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 1、函数零点的概念: 对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义: 函数的零点就是方程实数根,亦即函数的图象与轴交点的'横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。 3、函数零点的求法: 求函数的零点: (1)(代数法)求方程的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。 4、二次函数的零点: 二次函数。 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。 一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节 主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。 二、平面向量和三角函数 对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。 三、数列 数列这个板块,重点考两个方面:一个通项;一个是求和。 四、空间向量和立体几何 在里面重点考察两个方面:一个是证明;一个是计算。 五、概率和统计 概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的.概率;……事件;独立事件和独立重复事件发生的概率。 六、解析几何 这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。 七、压轴题 同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。 1集合思想及应用 集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解。 例:已知集合A={(x,y)|x2+mx—y+2=0},B={(x,y)|x—y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围。 2充要条件的判定 充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。 例:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件 3运用向量法解题 本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。 例:三角形ABC中,A(5,—1)、B(—1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。 4三个“二次”及关系 三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。 例:已知对于x的所有实数值,二次函数f(x)=x2—4ax+2a+12(a∈R)的.值都是非负的,求关于x的方程=|a—1|+2的根的取值范围。 5求解函数解析式 求解函数解析式是高考重点考查内容之一,需引起重视。 例:已知f(2—cosx)=cos2x+cosx,求f(x—1)。 例:(1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式。 (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(—1)|=|f(0)|=1,求f(x)的表达式。 6函数值域及求法 函数的值域及其求法是近几年高考考查的重点内容之一。 例:设m是实数,记M={m|m>1},f(x)=log3(x2—4mx+4m2+m+)。 (1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。 (2)当m∈M时,求函数f(x)的最小值。 (3)求证:对每个m∈M,函数f(x)的最小值都不小于1。 7奇偶性与单调性(一) 函数的单调性、奇偶性是高考的重点内容之一,掌握判定方法,正确认识单调函数与奇偶函数的图象。 例:设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数。 8奇偶性与单调性(二) 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。 例:已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。 例:已知奇函数f(x)是定义在(—3,3)上的减函数,且满足不等式f(x—3)+f(x2—3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=—3x2+3x—4(x∈B)的最大值。 9指数函数、对数函数问题 指数函数、对数函数是高考考查的重点内容之一。 例:设f(x)=log2,F(x)= +f(x)。 (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明; (2)若f(x)的反函数为f—1(x),证明:对任意的自然数n(n≥3),都有f—1(n)>; (3)若F(x)的反函数F—1(x),证明:方程F—1(x)=0有惟一解。 10函数图象与图象变换 函数的图象与性质是高考考查的重点内容之一,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。 例:已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。 11函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大。 例:设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=—4。 (1)求证:f(x)为奇函数; (2)在区间[—9,9]上,求f(x)的最值。 12三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。 例:已知α、β为锐角,且x(α+β—)>0,试证不等式f(x)= x<2对一切非零实数都成立。 例:设z1=m+(2—m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。 163三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。 例:已知<β<α<,cos(α—β)=,sin(α+β)=—,求sin2α的值_________。 14三角形中的三角函数式 三角形中的三角函数关系是历年高考的重点内容之一。 ●已知△ABC的三个内角A、B、C满足A+C=2B。,求cos的值。 15不等式的证明策略 不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。 16解不等式 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式。 17不等式的综合应用 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出。不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题。 例:设二次函数f(x)=ax2+bx+c(a>0),方程f(x)—x=0的两个根x1、x2满足0 (1)当x∈[0,x1时,证明x (2)设函数f(x)的图象关于直线x=x0对称,证明:x0< 。 任一x=A,x=B,记做AB AB,BAA=B AB={x|x=A,且x=B} AB={x|x=A,或x=B} Card(AB)=card(A)+card(B)—card(AB) (1)命题 原命题若p则q 逆命题若q则p 否命题若p则q 逆否命题若q,则p (2)AB,A是B成立的充分条件 BA,A是B成立的必要条件 AB,A是B成立的充要条件 1、集合元素具有 ①确定性; ②互异性; ③无序性 2、集合表示方法 ①列举法; ②描述法; ③韦恩图; ④数轴法 (3)集合的'运算 ①A∩(B∪C)=(A∩B)∪(A∩C) ②Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB (4)集合的性质 n元集合的字集数:2n 真子集数:2n—1; 非空真子集数:2n—2 高考数学重要知识点 表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式 公式运用 可用于某些分母含有根号的分式: 1/(3-4倍根号2)化简: 1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23 解方程: x^2-y^2=1991 思路分析: 利用平方差公式求解 解题过程: x^2-y^2=1991 (x+y)(x-y)=1991 因为1991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同时也可以是负数 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 高考数学知识点:轨迹方程的求解 符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性). 【轨迹方程】就是与几何轨迹对应的代数描述。 一、求动点的轨迹方程的基本步骤 ⒈建立适当的坐标系,设出动点M的坐标; ⒉写出点M的集合; ⒊列出方程=0; ⒋化简方程为最简形式; ⒌检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 .直译法:求动点轨迹方程的一般步骤 ①建系——建立适当的坐标系; ②设点——设轨迹上的任一点P(x,y); ③列式——列出动点p所满足的关系式; ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; ⑤证明——证明所求方程即为符合条件的动点轨迹方程。 高考数学知识点:排列组合公式 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!.n2!.....nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 20xx-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9.8.7.6.5.4.3.2.1 从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=P(3,9)=9.8.7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9.8.7/3.2.1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的.规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式 右式. ∴等式成立. 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5化简. 解法一原式 解法二原式 点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可变为 ∵,, ∴原方程可化为. 即,解得 高三数学三角函数公式 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 三角函数。 注意归一公式、诱导公式的正确性。 数列题。 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的.。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单 立体几何题。 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。 概率问题。 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+……+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 正弦、余弦典型例题。 1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为 2、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90° 3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120° 4、若∠A为锐角,且,则A=()A、15°B、30°C、45°D、60° 5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。 正弦、余弦解题诀窍。 1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。 2、已知三边,或两边及其夹角用余弦定理 3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。 易错点1 遗忘空集致误 错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误 错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。 易错点3 四种命题的结构不明致误 错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的 否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。 易错点4 充分必要条件颠倒致误 错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的.必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。 逻辑联结词理解不准致误 错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。 求函数定义域忽视细节致误 错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。 带有绝对值的函数单调性判断错误 错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。 掌握每一个公式定理 做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。 做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。 进行专题训练提高数学成绩 1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。 2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。 3、如何学好高中数学 1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。 2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的'题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。 3)主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。 高三数学知识点之导数公式 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2 三角函数公式 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 数学圆锥公式知识点 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的'一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py 直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h 正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2 圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l 弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s.h圆柱体V=p.r2h 乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根 b2-4ac>0注:方程有两个不等的实根 b2-4ac<0注:方程没有实根,有共轭复数根 人教版高考数学复习知识点 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的.交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等; (6)经过平面外一点只有一个平面和已知平面平行。 高考高三数学复习知识点 1、三类角的求法: ①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。 2、正棱柱——底面为正多边形的直棱柱 正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。 正棱锥的计算集中在四个直角三角形中: 3、怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。 直线与圆相交时,注意利用圆的“垂径定理”。 4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。 不看后悔!清华名师揭秘学好高中数学的方法 培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢? (1)欣赏数学的美感 比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密…… 通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。 (2)注意到数学在实际生活中的应用。 例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解. 学好数学,是现代公民的基本素养之一啊. 人教版高考年级数学知识点 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2、直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 云南高考数学知识点总结 第一部分集合 (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2; (2)注意:讨论的时候不要遗忘了的情况。 第二部分函数与导数 1、映射:注意 ①第一个集合中的元素必须有象; ②一对一,或多对一。 2、函数值域的求法: ①分析法; ②配方法; ③判别式法; ④利用函数单调性; ⑤换元法; ⑥利用均值不等式; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等); ⑧利用函数有界性; ⑨导数法 3、复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。 ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的'定义域是内函数的值域。 4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5、函数的奇偶性 (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件; (2)是奇函数; (3)是偶函数; (4)奇函数在原点有定义,则; (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 一、集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区别。 6.求解与函数有关的问题易忽略定义域优先的原则。 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。 9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法 11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。 12.求函数的值域必须先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 二、不等式 1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”. 2.绝对值不等式的解法及其几何意义是什么? 3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么? 4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”. 5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。 6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a 三、数列 1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗? 2.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的`所有项的和必定存在? 4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。) 5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 四、三角函数 1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗? 2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗? 4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次) 5. 反正弦、反余弦、反正切函数的取值范围分别是 6.你还记得某些特殊角的三角函数值吗? 7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗? 五、平面向量 1..数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。 2..数量积与两个实数乘积的区别: 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。 已知实数,且,则a=c,但在向量的数量积中没有。 在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。 3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。 六、解析几何 1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况? 2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。 3.直线的倾斜角、到的角、与的夹角的取值范围依次是。 4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗? 5. 对不重合的两条直线 (建议在解题时,讨论后利用斜率和截距) 6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。 7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。) 8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗? 9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题? 10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式? 11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?) 12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行). 13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系? 七、立体几何 1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。 2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么? 3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见 4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。 5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。 6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。 7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗? 8. 两条异面直线所成的角的范围:0°<α≤90°< p=""> 直线与平面所成的角的范围:0o≤α≤90° 【高考数学知识点总结】相关文章: 数学高考知识点总结12-04 数学高考知识点总结06-18 高考数学必考知识点总结10-28 高考数学知识点总结07-03 高考数学知识点总结05-25 【精选】高考数学知识点总结07-06 高考数学知识点总结精华05-27 数学高考知识点总结15篇12-07 高考文科数学知识点总结07-30 高考数学知识点归纳总结05-25高考数学知识点总结2
高考数学知识点总结3
高考数学知识点总结4
高考数学知识点总结5
高考数学知识点总结6
高考数学知识点总结7
高考数学知识点总结8
高考数学知识点总结11
高考数学知识点总结12
高考数学知识点总结13
高考数学知识点总结14
高考数学知识点总结15