高考数学知识点总结

时间:2024-07-04 08:32:21 高考备考 我要投稿

高考数学知识点总结汇编【15篇】

  总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,为此要我们写一份总结。总结一般是怎么写的呢?下面是小编收集整理的高考数学知识点总结,欢迎阅读与收藏。

高考数学知识点总结汇编【15篇】

高考数学知识点总结1

  1集合思想及应用

  集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解。

  例:已知集合A={(x,y)|x2+mx—y+2=0},B={(x,y)|x—y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围。

  2充要条件的判定

  充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。

  例:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件

  3运用向量法解题

  本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。

  例:三角形ABC中,A(5,—1)、B(—1,7)、C(1,2),求:(1)BC边上的中线

  AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。

  4三个“二次”及关系

  三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。

  例:已知对于x的所有实数值,二次函数f(x)=x2—4ax+2a+12(a∈R)的值都是非负的,求关于x的方程=|a—1|+2的.根的取值范围。

  5求解函数解析式

  求解函数解析式是高考重点考查内容之一,需引起重视。

  例:已知f(2—cosx)=cos2x+cosx,求f(x—1)。

  例:(1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式。

  (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(—1)|=|f(0)|=1,求f(x)的表达式。

  6函数值域及求法

  函数的值域及其求法是近几年高考考查的重点内容之一。

  例:设m是实数,记M={m|m>1},f(x)=log3(x2—4mx+4m2+m+)。

  (1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。

  (2)当m∈M时,求函数f(x)的最小值。

  (3)求证:对每个m∈M,函数f(x)的最小值都不小于1。

  7奇偶性与单调性(一)

  函数的单调性、奇偶性是高考的重点内容之一,掌握判定方法,正确认识单调函数与奇偶函数的图象。

  例:设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数。

  8奇偶性与单调性(二)

  函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。

  例:已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。

  例:已知奇函数f(x)是定义在(—3,3)上的减函数,且满足不等式f(x—3)+f(x2—3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=—3x2+3x—4(x∈B)的最大值。

  9指数函数、对数函数问题

  指数函数、对数函数是高考考查的重点内容之一。

  例:设f(x)=log2,F(x)= +f(x)。

  (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

  (2)若f(x)的反函数为f—1(x),证明:对任意的自然数n(n≥3),都有f—1(n)>;

  (3)若F(x)的反函数F—1(x),证明:方程F—1(x)=0有惟一解。

  10函数图象与图象变换

  函数的图象与性质是高考考查的重点内容之一,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。

  例:已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。

  11函数中的综合问题

  函数综合问题是历年高考的热点和重点内容之一,一般难度较大。

  例:设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=—4。

  (1)求证:f(x)为奇函数;

  (2)在区间[—9,9]上,求f(x)的最值。

  12三角函数的图象和性质

  三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。

  例:已知α、β为锐角,且x(α+β—)>0,试证不等式f(x)= x<2对一切非零实数都成立。

  例:设z1=m+(2—m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。

  163三角函数式的化简与求值

  三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。

  例:已知<β<α<,cos(α—β)=,sin(α+β)=—,求sin2α的值_________。

  14三角形中的三角函数式

  三角形中的三角函数关系是历年高考的重点内容之一。

  ●已知△ABC的三个内角A、B、C满足A+C=2B。,求cos的值。

  15不等式的证明策略

  不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。

  16解不等式

  不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式。

  17不等式的综合应用

  不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出。不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题。

  例:设二次函数f(x)=ax2+bx+c(a>0),方程f(x)—x=0的两个根x1、x2满足0

  (1)当x∈[0,x1时,证明x

  (2)设函数f(x)的图象关于直线x=x0对称,证明:x0< 。

高考数学知识点总结2

  圆与圆的位置关系的判断方法

  一、设两个圆的半径为R和r,圆心距为d。

  则有以下五种关系:

  1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

  2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

  3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的'半径之差。

  4、d

  5、d

  二、圆和圆的位置关系,还可用有无公共点来判断:

  1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

  2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

  3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

高考数学知识点总结3

  掌握每一个公式定理

  做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。

  做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。

  进行专题训练提高数学成绩

  1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的.脸。

  2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

  3、如何学好高中数学

  1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  3)主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

高考数学知识点总结4

  技巧一:"小题'巧做

  在数学考试中,相对解答题,选择题被称为"小题'。建议考生做题时实行敏捷方法,通过对选项的观看,利用特别值代入法、特别方程法、排解法等,排解不行能的选项,把选择题从4选1变成2选1,提高解题的速度。

  技巧二:把握概念、公式拿下基础分

  在解答题中,考生要留意概念型的内容。比如,在考试中,一些考生常写错极坐标,考生平常若能牢记极坐标概念,就知道极坐标怎么写,把握这个学问点,在极坐标和平面坐标的转换中,就能立即拿分。

  另外就是娴熟把握公式。数学解答题里,假如第一道大题考三角函数的话,三角函数的'正弦定理、余弦定理、帮助角公式、诱导公式等若能熟识把握,即便题不会做,把这些公式写上去,也能得公式分。此外,在数列类考题中,把握递推公式求通项公式、前n项和公式,代入公式简洁化简变形就能得分。在立体几何考题中,有的考生喜爱用向量法答题,必需把握面面角公式、线面角公式;在考极坐标与参数方程,把握极坐标与参数方程的转化公式就能得分,这些都属于公式分。

  技巧三:分步骤答题"抢'计算分

  按目前的评分细则,数学考试按步骤给分:考生写对一步给一步的分。比如,考线性回归方程,求回归系数b。假如整体计算,算错一个地方,系数b的值算错,分数就没有了。假如分步答题,先算x与y的平均数,然后算分子,再算分母,分子分母都算好,再带到式子里计算,计算每步都有分,即便算错一个地方,之前的步骤也能得分。

  技巧四:把握常见"套路'拿分数

  比如解三角形时求取值范围,通常有两种策略:第一种将边换成角,再利用三角函数的有界性去得分;其次种把角换成边,用均值不等式或图形的几何性质去得分。这是常见的答题技巧。这些答题技巧近期可通过训练,把握固定套路,就能拿到分数。

  温馨提示

  另外,提示考生,在考场上,不要由于答题挨次支配不当导致丢分。建议考生答题由易到难,假如某道考题较难,经仔细思索还没有思路,要坚决进入下一题。不少考生在考试中过于纠结解析几何和导数题,导致最终一道选做题没有时间做,但选做题的难度通常较小,这道题不做就丢失了得分机会。

  考生答题习惯不好也会消失丢分的状况。例如,概率统计题属于应用题,答题需要有肯定的文字表述,有的考生简洁计算数据,以为做完了,或文字作答时统计用语不规范,导致被扣步骤分。还有书写问题。数学答卷给的位置空间大小适当,答题时考生要有规划,在不跳步的状况下,步骤分明,成行成列,把踩分点写明确,便利老师按步给分。

高考数学知识点总结5

  高考数学知识点:轨迹方程的求解

  符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

  【轨迹方程】就是与几何轨迹对应的代数描述。

  一、求动点的轨迹方程的基本步骤

  ⒈建立适当的坐标系,设出动点M的坐标;

  ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的'方法叫做参数法。

  ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  .直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

  高考数学知识点:排列组合公式

  排列组合公式/排列组合计算公式

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法."排列"

  把5本书分给3个人,有几种分法"组合"

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

  n!/(n1!.n2!.....nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9.8.7.6.5.4.3.2.1

  从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=P(3,9)=9.8.7,(从9倒数3个的乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

  A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9.8.7/3.2.1

  排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

  点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种.

  点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

  例3判断下列问题是排列问题还是组合问题?并计算出结果.

  (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

  分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

  (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

  (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

  (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

  例4证明.

  证明左式

  右式.

  ∴等式成立.

  点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

  例5化简.

  解法一原式

  解法二原式

  点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可变为

  ∵,,

  ∴原方程可化为.

  即,解得

  高三数学三角函数公式

  锐角三角函数公式

  sin α=∠α的对边 / 斜边

  cos α=∠α的邻边 / 斜边

  tan α=∠α的对边 / ∠α的邻边

  cot α=∠α的邻边 / ∠α的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  两角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化积

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高考数学知识点总结6

  一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

  主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

  二、平面向量和三角函数

  对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

  三、数列

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  四、空间向量和立体几何

  在里面重点考察两个方面:一个是证明;一个是计算。

  五、概率和统计

  概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

  六、解析几何

  这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的'通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

  七、压轴题

  同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学知识点总结7

  高中数学复习的五大要点分析

  一、端正态度,切忌浮躁,忌急于求成

  在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:

  (1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。

  (2)复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。

  (3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。

  因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。

  二、注重教材、注重基础,忌盲目做题

  要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。

  可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。

  三、抓薄弱环节,做好复习的针对性,忌无计划

  每个同学在数学学习上遇到的问题有共同点,更有不同点。在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。同时,也请同学们注意:在你问问题之前先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。

  高三的复习一定是有计划、有目标的,所以千万不要盲目做题。第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。因此,仅靠简单做题是达不到一轮复习应该具有的效果。而且盲目做题没有针对性,更不会有全面性。在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。

  四、在平时做题中要养成良好的解题习惯,忌不思

  1.树立信心,养成良好的运算习惯。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

  2.做好解题后的开拓引申,培养一题多解和举一反三的能力。解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。

  考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:

  (1)把题目条件开拓引申。

  ①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。

  (2)把题目结论开拓引申。

  (3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。

  3.提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

  五、学会总结、归纳,训练到位,忌题量不足

  我在暑期上课的时候发现,很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。做题如果不注重思路的分析,知识点的运用,效果可想而知。因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。

  实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。而解题能力不是三两道题就能提升的,而是要大量的反复的.训练、认真细致的推敲才会有较大的提升。有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。

  但是,大量训练绝对不是题海战术。因为针对每章节做题都有目标,同时做题训练都需要不断的总结,既要横向总结,也要纵向深入。只要在每章节做题做到一定程度的时候都能感觉到这一章的知识点有哪些,典型题型有哪些,方法和技巧有哪些,换句话说,如果随机抽取一些近几年关于这一章的高考题都会做,那我认为就可以了。

  高中数学知识点归纳

  1.必修课程由5个模块组成:

  必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

  必修2:立体几何初步、平面解析几何初步。

  必修3:算法初步、统计、概率。

  必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

  必修5:解三角形、数列、不等式。

  以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

  选修课程分为4个系列:

  系列1:2个模块

  选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

  选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

  系列2:3个模块

  选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

  选修2-2:导数及其应用、推理与证明、数系的扩充与复数

  选修2-3:计数原理、随机变量及其分布列、统计案例

  选修4-1:几何证明选讲

  选修4-4:坐标系与参数方程

  选修4-5:不等式选讲

  2.重难点及其考点:

  重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

  难点:函数,圆锥曲线

  高考相关考点:

  1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

  2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

  3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

  4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

  5.平面向量:初等运算、坐标运算、数量积及其应用

  6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

  7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

  8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

  10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

  11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

  12.导数:导数的概念、求导、导数的应用

  13.复数:复数的概念与运算

  高三数学重要知识点总结

  考点一:集合与简易逻辑

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与平面向量

  一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  考点六:解析几何

  一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

  考点七:算法复数推理与证明

  高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

高考数学知识点总结8

  1、函数零点的概念:

  对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:

  函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的`性质找出零点。

  4、二次函数的零点:

  二次函数。

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高考数学知识点总结9

  易错点1 遗忘空集致误

  错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误

  错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

  易错点3 四种命题的结构不明致误

  错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的

  否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。

  易错点4 充分必要条件颠倒致误

  错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

  逻辑联结词理解不准致误

  错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

  求函数定义域忽视细节致误

  错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

  带有绝对值的函数单调性判断错误

  错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

高考数学知识点总结11

  高三数学知识点之导数公式

  1.y=c(c为常数) y'=0

  2.y=x^n y'=nx^(n-1)

  3.y=a^x y'=a^xlna

  y=e^x y'=e^x

  4.y=logax y'=logae/x

  y=lnx y'=1/x

  5.y=sinx y'=cosx

  6.y=cosx y'=-sinx

  7.y=tanx y'=1/cos^2x

  8.y=cotx y'=-1/sin^2x

  9.y=arcsinx y'=1/√1-x^2

  10.y=arccosx y'=-1/√1-x^2

  11.y=arctanx y'=1/1+x^2

  12.y=arccotx y'=-1/1+x^2

  三角函数公式

  锐角三角函数公式

  sin α=∠α的对边 / 斜边

  cos α=∠α的邻边 / 斜边

  tan α=∠α的对边 / ∠α的邻边

  cot α=∠α的邻边 / ∠α的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  数学圆锥公式知识点

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的'标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h

  正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2

  圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l

  弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r

  锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=s.h圆柱体V=p.r2h

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

【高考数学知识点总结】相关文章:

数学高考知识点总结06-18

数学高考知识点总结12-04

高考数学必考知识点总结10-28

高考数学知识点总结05-25

高考数学知识点总结07-03

高考文科数学知识点总结07-30

高考数学知识点总结精华05-27

高考数学知识点归纳总结05-25

数学高考知识点总结15篇12-07

高考数学知识点10-28