高考数学快速解题技巧
只要路是对的,就不怕路远。高考复习数学也该如此,掌握正确的解题技巧就能快速答题,下面由小编为大家整理高考数学快速解题技巧有关的资料,希望对大家有所帮助!
高考数学快速解题技巧
函数与方程
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
数形结合
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特殊与一般
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
高考数学考场答题技巧
一、提前进入角色
很多同学都有这样的.习惯,每次刚刚考试完,会有很多遗憾,总想如果这次考试要是重新考的话,我会考得比较好。那么,要想在高考这一次考试中取得比较好的成绩,必须要少留遗憾,最正常的发挥,至于不会做的,或者根本做不出来的谈不上遗憾,就怕自己的水平没有发挥出来。
提前进入角色应该特别关注以下两个问题:
1、生活作息上的适当调整。首先,调整好自己的生物钟,不要熬夜,做题尽量放在白天与高考同步。其次,尽量保持与平时一致的生活习惯,饮食上不要有太 大的改变,避免肠胃不适。再次,要有积极的心理暗示。人的潜力有时候自己都难以相信,当你精力集中、心理暗示到一定程度,可以使自己超水平发挥的。
2、高考前几天要在数学学科做好“保温”。有三点要注意:第一,分析订正错题,总结常见的几类错误。第二,分类看旧题,针对重点内容重点看。看看《考 试说明》要求比较高的知识点,总结一下通性和通法,进行专项内容的总结和分类,形成解决这类问题的常见方法。第三,适当做一些新题。新题难度不要太大,中 等或者偏下。中等可以保持你的斗志,偏下是为了保温。
二、监考发卷后迅速摸清题情
高考会提前五分钟发卷,这五分钟同学们不要答卷,先用一分钟填考试信息,接下来同学们就要尽快地摸清题情。
1、识别试卷中曾做过的,会做的题。也要注意有没有可能会做,但是需要花大量的时间的题。心里要立刻有一个答题的顺序。
2、舍得放弃,正确对待得与失。万一遇到某个题从来都没有见过,可以大概看看是哪个类型,用什么方法能解决,这个题目是考察什么,迅速决定是否放弃。 如果觉得花两个小时也不一定能做出来,这个时候要舍得放弃,集中自己的精力,解决自己会做的问题,高考考得不是会多少,而是对多少。
三、四先四后
即先易后难、先熟后生、先高后低、先同后异。
1、易与熟:涉及的概念公式方法能融会贯通,脱口而出,一目了然。这样的问题我们很快就能做出来,这就是先“易”和先“熟”。
2、高:选择填空一步5分,相比大题按步骤给分,分数更高。
3、同:三种(选择、填空、解答)。同一种类型的题,尽量放在同一个时间答。这当然也要具体问题具体分析。
高考数学解题技巧及思路
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
【高考数学快速解题技巧】相关文章:
数学快速解题技巧06-29
中考数学快速解题技巧07-01
中考数学快速解题技巧介绍07-01
高考数学解题技巧06-30
关于高考数学解题技巧06-30
高考数学导数解题技巧08-25
高考数学函数解题技巧08-25
高考文科数学解题技巧08-25
高考英语完形填空解题技巧方法快速提高09-27