高考资讯

高考数学知识点总结

时间:2021-11-26 15:25:26 高考资讯 我要投稿

关于高考数学知识点总结

  上学期间,大家最不陌生的就是知识点吧!知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。那么,都有哪些知识点呢?以下是小编精心整理的关于高考数学知识点总结,希望能够帮助到大家。

关于高考数学知识点总结

  参数方程

  一、坐标系与参数方程:

  1、坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。

  2、参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。

  二、高中数学知识点之参数方程定义

  一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

  并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

  三、高中数学知识点之参数方程

  圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

  椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

  双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数

  判断函数值域的方法

  1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

  2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

  3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

  5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的`特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

  6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

  7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

  求函数单调性的基本方法

  解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。

  1、把握好函数单调性的定义。证明函数单调性一般(初学最好用定义)用定义(谨防循环论证),如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。另外还请注意函数单调性的定义是[充要命题]。

  2、熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断复合函数单调性的方法:同增异减。

  3、高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。 还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。

【关于高考数学知识点总结】相关文章:

关于高考数学知识点总结精华11-26

高考数学必考知识点总结11-26

数学高考知识点11-23

高考数学知识点总结(15篇)12-26

高考数学知识点总结15篇12-23

高考数学易错的知识点总结12-09

数学高考知识点精选总结5篇11-23

高考数学三知识点11-24

高考数学必考知识点11-21