高考数学知识点归纳

时间:2024-06-13 13:30:10 晓丽 高考备考 我要投稿

高考数学知识点归纳

  在年少学习的日子里,大家最不陌生的就是知识点吧!知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。哪些才是我们真正需要的知识点呢?以下是小编收集整理的高考数学知识点归纳,希望对大家有所帮助。

高考数学知识点归纳

  高考数学常考知识点归纳

  复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合。本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现。而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能。简化运算的意识也应进一步加强。

  在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究。

  复数中的难点

  (1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。

  (2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。

  (3)复数的辐角主值的求法。

  (4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。

  高考数学知识点归纳

  1.数列的定义

  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。

  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。

  (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

  (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。

  (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。

  2.数列的分类

  (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。

  (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。

  高考数学知识点归纳

  两个复数相等的定义:

  如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R时,a+bi=0

  a=0,b=0

  复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

  复数相等特别提醒:

  一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

  解复数相等问题的方法步骤:

  (1)把给的复数化成复数的标准形式;

  (2)根据复数相等的充要条件解之。

  高考数学知识点归纳

  一、间断点求极限

  1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

  2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限 存在;

  3、渐近线,(垂直、水平或斜渐近线);

  4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

  二、下面我们重点讲一下数列极限的典型方法。

  (一)重要题型及点拨

  1、求数列极限

  求数列极限可以归纳为以下三种形式。

  2、抽象数列求极限

  这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

  (二)求具体数列的极限,可以参考以下几种方法:

  a、利用单调有界必收敛准则求数列极限。

  首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

  b、利用函数极限求数列极限

  如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

  (三)求项和或项积数列的极限,主要有以下几种方法:

  a、利用特殊级数求和法

  如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

  b、利用幂级数求和法

  若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

  c、利用定积分定义求极限

  若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

  d、利用夹逼定理求极限

  若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

  e、求项数列的积的极限

  一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

  高考数学知识点归纳

  正交矩阵行列式的值

  正交矩阵的行列式是+1或1。实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值1。

  矩阵的作用就是一个运动的快照,矩阵乘以一个向量,相当于将这个向量进行旋转,伸缩。而如果是正交矩阵乘以一个向量,它就是所有保持原点不动、长度不变的线性变换。

  比如旋转,比如反射。就这两种。前者保持定向,后者反向。以二维为例,正交矩阵都为[cos(a),sin(a);-sin(a),cos(a)],或者[1,0;0,-1],或者这两者的组合的形式。前者是旋转a弧度,后者是按x轴反射。

  对于置换矩阵,行列式是+1还是1匹配置换是偶还是奇的标志,行列式是行的交替函数。

  特征值相同的矩阵相似吗

  两个矩阵的特征值相等的时候不一定相似,但当这两个矩阵是实对称矩阵时,有相同的特征值必相似。比如当矩阵A与B的特征值相同,A可对角化,但B不可以对角化时,A和B就不相似。当这两个矩阵都是实对称矩阵时,都一定可以对角化,于是有相同的特征值就一定相似。

  在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。

  判断两个矩阵是否相似的辅助方法:

  (1)判断特征值是否相等;

  (2)判断行列式是否相等;

  (3)判断迹是否相等;

  (4)判断秩是否相等。

  以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。

  两个矩阵若相似于同一对角矩阵,这两个矩阵相似。

  相似矩阵的行列式是否相等

  相似矩阵的行列式相等。相似矩阵有相同的特征值、特征行列式,行列式也是相等的。另外,两矩阵的迹、秩,都是相等的。设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵,并称矩阵A与B相似,记为A~B。对进行运算称为对进行相似变换,称可逆矩阵为相似变换矩阵。

  若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似。对于n阶方阵A,若存在可逆矩阵P,使其为对角阵,则称方阵A可对角化。

  n阶矩阵A可对角化的充要条件是对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数,即设是矩阵A的重特征值。

  定理的证明过程实际上已经给出了把方阵对角化的方法。

  若矩阵可对角化,则可按下列步骤来实现:

  求出全部的特征值;

  对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

  上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

  高考数学知识点归纳

  第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二:平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  第五:概率和统计。

  这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

  第六:解析几何。

  这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七:押轴题。

  考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

  高考数学知识点归纳

  高三高考数学必修一知识点

  1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。

  2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

  3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。

  4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。

  5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。

  6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。

  7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。

  8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

  9.从实际问题中抽象出二元一次不等式(组)的步骤是:

  (1)根据题意,设出变量;

  (2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;

  (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。

  高三高考必修五数学知识点

  1.等差数列的定义

  如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d。

  3.等差中项

  如果A=(a+b)/2,那么A叫做a与b的等差中项。

  4.等差数列的常用性质

  (1)通项公式的推广:an=am+(n-m)d(n,m∈N.)。

  (2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N.)。

  (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N.)是公差为md的等差数列。

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

  (5)S2n-1=(2n-1)an。

  (6)若n为偶数,则S偶-S奇=nd/2;

  若n为奇数,则S奇-S偶=a中(中间项)。

  注意:

  一个推导

  利用倒序相加法推导等差数列的前n项和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  两个技巧

  已知三个或四个数组成等差数列的一类问题,要善于设元。

  (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。

  四种方法

  等差数列的判断方法

  (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

  (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N.)都成立;

  (3)通项公式法:验证an=pn+q;

  (4)前n项和公式法:验证Sn=An2+Bn.

  注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。

  高考数学必修三知识点整理

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  高考数学知识点归纳

  高三数学重要知识点整理

  考点一:集合与简易逻辑

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与平面向量

  一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查。在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目。

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  人教版高考数学知识点总结

  随机抽样

  简介

  (抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

  优点:操作简便易行

  缺点:总体过大不易实行

  方法

  (1)抽签法

  一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  (抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

  (2)随机数法

  随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

  分层抽样

  简介

  分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

  定义

  一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

  整群抽样

  定义

  什么是整群抽样

  整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

  应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

  优缺点

  整群抽样的优点是实施方便、节省经费;

  整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

  实施步骤

  先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

  一、确定分群的标注

  二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

  三、据各样本量,确定应该抽取的群数。

  四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

  例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

  与分层抽样的区别

  整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

  分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

  分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

  系统抽样

  定义

  当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

  步骤

  一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

  (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

  (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

  (3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

  (4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

  高三高考数学复数知识点记忆口诀

  复数

  虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

  对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

  箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

  代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

  一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

  利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

  三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

  辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别

  高考数学知识点归纳

  一、求动点的轨迹方程的基本步骤

  1、建立适当的坐标系,设出动点M的坐标;

  2、写出点M的集合;

  3、列出方程=0;

  4、化简方程为最简形式;

  5、检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  直译法:求动点轨迹方程的一般步骤

  ①建系建立适当的坐标系;

  ②设点设轨迹上的任一点P(x,y);

  ③列式列出动点p所满足的关系式;

  ④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明证明所求方程即为符合条件的动点轨迹方程。

  高考数学知识点归纳

  高考数学知识点:动点的轨迹方程动点的轨迹方程:

  在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

  求动点的轨迹方程的基本方法:

  直接法、定义法、相关点法、参数法、交轨法等。

  1、直接法:

  如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;

  用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

  2、定义法:

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法,这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化,转化成某一基本轨迹的定义条件;

  3、相关点法:

  动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

  4、参数法:

  求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

  5、交轨法:

  求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

  求轨迹方程的步骤:

  (l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);

  (2)写集合写出符合条件P的点M的集合P(M);

  (3)列式用坐标表示P(M),列出方程f(x,y)=0;

  (4)化简化方程f(x,y)=0为最简形式;

  (5)证明证明以化简后的方程的解为坐标的点都是曲线上的点。

  高考数学知识点归纳

  1.总体和样本

  在统计学中 , 把研究对象的全体叫做总体

  把每个研究对象叫做个体

  把总体中个体的总数叫做总体容量

  为了研究总体 的有关性质,一般从总体中随机抽取一部分研究,我们称它为样本其中个体的个数称为样本容量

  2.简单随机抽样

  也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  3.简单随机抽样常用的方法:

  (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

  在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

  4.抽签法:

  (1)给调查对象群体中的每一个对象编号;

  (2)准备抽签的工具,实施抽签

  (3)对样本中的每一个个体进行测量或调查

  例:请调查你所在的学校的学生做喜欢的体育活动情况。

  5.随机数表法:

  例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

  高考数学知识点归纳

  高考数学知识点归纳:判断函数值域的方法

  1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

  2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

  3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

  5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

  6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

  7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

  高考数学知识点归纳:对数函数性质

  定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

  值域:实数集R,显然对数函数无界。

  定点:函数图像恒过定点(1,0)。

  单调性:a>1时,在定义域上为单调增函数;

  奇偶性:非奇非偶函数

  周期性:不是周期函数

  对称性:无

  最值:无

  零点:x=1

  注意:负数和0没有对数。

  两句经典话:底真同对数正,底真异对数负。解释如下:

  也就是说:若y=logab (其中a>0,a≠1,b>0)

  当a>1,b>1时,y=logab>0;

  当01时,y=logab<0;

  当a>1,0

  高考数学必考知识点:方差的性质

  1.设C为常数,则D(C) = 0(常数无波动);

  2. D(CX )=C2 D(X ) (常数平方提取);

  证:

  特别地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差无负值)

  3.若X 、Y相互独立,则

  证:

  记则前面两项恰为D(X )和D(Y ),第三项展开后为

  当X、Y相互独立时,故第三项为零。

  特别地独立前提的逐项求和,可推广到有限项。

  高考数学必考知识点总结

  高考数学必考知识点:判断函数值域的方法

  1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

  2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

  3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

  5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

  6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

  7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

  高考数学必考知识点:对数函数性质

  定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

  值域:实数集R,显然对数函数无界。

  定点:函数图像恒过定点(1,0)。

  单调性:a>1时,在定义域上为单调增函数;

  奇偶性:非奇非偶函数

  周期性:不是周期函数

  对称性:无

  最值:无

  零点:x=1

  注意:负数和0没有对数。

  两句经典话:底真同对数正,底真异对数负。解释如下:

  也就是说:若y=logab (其中a>0,a≠1,b>0)

  当a>1,b>1时,y=logab>0;

  当01时,y=logab<0;

  当a>1,0

  高考数学必考知识点:方差的性质

  1.设C为常数,则D(C) = 0(常数无波动);

  2. D(CX )=C2 D(X ) (常数平方提取);

  证:

  特别地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差无负值)

  3.若X 、Y相互独立,则

  证:

  记则前面两项恰为D(X )和D(Y ),第三项展开后为

  当X、Y相互独立时,故第三项为零。

  特别地独立前提的逐项求和,可推广到有限项。

  提升数学成绩的方法

  第一部分:学习的方法

  一、预习是聪明的选择

  最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。

  二、基本概念是根本

  基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。

  三、作业可巩固所学知识

  作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。

  四、难题要独立完成

  想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)

  第二部分:复习的方法

  五、加倍递减训练法

  通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。

  六、考前不要做新题

  考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的复习方法。

  第三部分:考试的方法

  七、良好心态

  考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态

  八、考试从审题开始

  审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。

  九、学会使用演算纸

  要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。

  十、正确对待难题

  难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。

  高考数学知识点归纳

  一、简单的逻辑联结词

  1.用联结词且联结命题p和命题q,记作pq,读作p且q.

  2.用联结词或联结命题p和命题q,记作pq,读作p或q.

  3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作非p或p的否定.

  4.命题pq,pq,綈p的真假判断:

  pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.

  二、全称量词与存在量词

  1.全称量词与全称命题

  (1)短语所有的任意一个在逻辑中通常叫做全称量词,并用符号表示

  (2)含有全称量词的命题,叫做全称命题

  (3)全称命题对M中任意一个x,有p(x)成立可用符号简记为xM,p(x),读作对任意x属于M,有p(x)成立

  2.存在量词与特称命题

  (1)短语存在一个至少有一个在逻辑中通常叫做存在量词,并用符号表示

  (2)含有存在量词的命题,叫做特称命题

  (3)特称命题存在M中的一个x0,使p(x0)成立可用符号简记为x0M,P(x0),读作存在M中的元素x0,使p(x0)成立

  三、含有一个量词的命题的否定

  四、解题思路

  1.逻辑联结词与集合的关系

  或、且、非三个逻辑联结词,对应着集合运算中的并、交、补,因此,常常借助集合的并、交、补的意义来解答由或、且、非三个联结词构成的命题问题

  2.正确区别命题的否定与否命题

  否命题是对原命题若p,则q的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;命题的否定即非p,只是否定命题p的结论,命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系

  3.全称命题真假的判断方法

  (1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;

  (2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可

  4.特称命题真假的判断方法

  要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题

  高考数学知识点归纳

  解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

  解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

  二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r

  你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)

  二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

  通项公式:它是第r+1项而不是第r项;

  事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0

  求分布列的解答题你能把步骤写全吗?

  如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

  你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

【高考数学知识点归纳】相关文章:

高考数学知识点归纳09-16

高考数学知识点归纳总结05-25

高考数学知识点归纳(15篇)11-15

高考数学知识点归纳精选15篇11-25

关于高考数学知识点归纳总结05-06

高考英语知识点归纳08-09

高考数学知识点归纳集锦15篇11-23

高考必备的生物知识点归纳12-16

高考生物知识点归纳05-24