高考备考

高考数学一轮复习知识点整理

时间:2022-02-22 20:30:10 高考备考 我要投稿

高考数学一轮复习知识点整理

  在日复一日的学习中,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?以下是小编帮大家整理的高考数学一轮复习知识点整理,希望对大家有所帮助。

高考数学一轮复习知识点整理

高考数学一轮复习知识点整理1

  (1)不等关系

  感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

  (2)一元二次不等式

  ①经历从实际情境中抽象出一元二次不等式模型的过程。

  ②通过函数图象了解一元二次不等式与相应函数、方程的联系。

  ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

  (3)二元一次不等式组与简单线性规划问题

  ①从实际情境中抽象出二元一次不等式组。

  ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

  ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

  (4)基本不等式:

  ①探索并了解基本不等式的证明过程。

  ②会用基本不等式解决简单的(小)值问题。

高考数学一轮复习知识点整理2

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数 b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的`表达式。

高考数学一轮复习知识点整理3

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

  一、求动点的轨迹方程的基本步骤。

  1.建立适当的坐标系,设出动点M的坐标;

  2.写出点M的集合;

  3.列出方程=0;

  4.化简方程为最简形式;

  5.检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  求动点轨迹方程的一般步骤:

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

【高考数学一轮复习知识点整理】相关文章:

高考数学一轮复习重要知识点的归纳整理09-17

高考数学一轮复习知识点梳理09-22

高考数学一轮复习重要知识点09-18

2018数学高考一轮复习的知识点09-12

几何高考数学一轮复习知识点09-11

高考第一轮复习数学知识点09-26

高考数学一轮复习易错知识点09-22

高考一轮复习数学集合热门知识点归纳09-18

平面向量数学高考一轮复习知识点09-17

高考数学一轮复习重要的知识点09-10