高考备考

数学高考必考知识点

时间:2022-02-19 16:25:05 高考备考 我要投稿

数学高考必考知识点

  在我们平凡的学生生涯里,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。哪些才是我们真正需要的知识点呢?以下是小编为大家整理的数学高考必考知识点,希望能够帮助到大家。

数学高考必考知识点

数学高考必考知识点1

  1、一元函数微分学。主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;

  2、证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

  3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

  4、向量代数和空间解析几何。主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。

  5、多元函数微分学。主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的

  一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的值和最小值。

  6、多元函数的积分学。这部分是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

  7、无穷级数。主要考查级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。

  8、微分方程,主要考查一阶微分方程的通解或特解;可降阶方程;线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

  除了以上分章节的考查重点,还有跨章节乃至跨科目的综合考查题,近几年出现的有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题等。

  高考必考高等数学学习方法

  养成良好的学习数学习惯

  多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  及时了解、掌握常用的数学思想和方法

  中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

  高考必考高等数学学习技巧

  逐步形成“以我为主”的学习模式

  数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

数学高考必考知识点2

  高考数学必考知识点归纳必修一:

  1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

  高考数学必考知识点归纳必修二:

  1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

  这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

  2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

  3、圆方程

  高考数学必考知识点归纳必修三:

  1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

  高考数学必考知识点归纳必修四:

  1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

  2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

  高考数学必考知识点归纳必修五:

  1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

  高考数学必考知识点归纳文科选修:

  选修1--1:重点:高考占30分

  1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

  选修1--2:

  1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

  高考数学必考知识点归纳理科选修:

  选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

  选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

数学高考必考知识点3

  一、充分条件和必要条件

  当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

  二、充分条件、必要条件的常用判断法

  1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

  2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

  3.集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A?B,则p是q的充分条件。

  若A?B,则p是q的必要条件。

  若A=B,则p是q的充要条件。

  若A?B,且B?A,则p是q的既不充分也不必要条件。

  三、知识扩展

  1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

  (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

  (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

  (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

  2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

数学高考必考知识点4

  一个推导

  利用错位相减法推导等比数列的前n项和:

  Sn=a1+a1q+a1q2+…+a1qn-1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

  两个防范

  (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

  三种方法

  等比数列的判断方法有:

  (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N.),则{an}是等比数列.

  (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N.),则数列{an}是等比数列.

  (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N.),则{an}是等比数列.

  注:前两种方法也可用来证明一个数列为等比数列.

数学高考必考知识点5

  高三高考数学必考知识点

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N.

  2.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)补集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,则? A ;

  ②若, ,则 ;

  ③若且 ,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。

  4.有关子集的几个等价关系

  ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

  ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集运算的性质

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  人教版高考数学必考知识点

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

  必考高考数学诱导公式知识点

  用的诱导公式有以下几组:

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

数学高考必考知识点6

  一、函数的单调性

  在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.

  f(x)f(x)在(a,b)上为增函数.

  f(x)f(x)在(a,b)上为减函数.

  二、函数的极值

  1、函数的极小值:

  函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

  2、函数的极大值:

  函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

  极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

  三、函数的最值

  1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

  2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

  四、求可导函数单调区间的一般步骤和方法

  1、确定函数f(x)的定义域;

  2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;

  3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

  4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

  五、求函数极值的步骤

  1、确定函数的定义域;

  2、求方程f(x)=0的根;

  3、用方程f(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;

  4、由f(x)=0根的'两侧导数的符号来判断f(x)在这个根处取极值的情况.

  六、求函数f(x)在[a,b]上的最大值和最小值的步骤

  1、求函数在(a,b)内的极值;

  2、求函数在区间端点的函数值f(a),f(b);

  3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.

  特别提醒:

  1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件.

  2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

  3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

数学高考必考知识点7

  解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

  解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

  二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r

  你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)

  二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

  通项公式:它是第r+1项而不是第r项;

  事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0

  求分布列的解答题你能把步骤写全吗?

  如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

  你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

数学高考必考知识点8

  一.例题讲解:

  【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z}

  对于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

  分析二:简单列举集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  = P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合, ,则( B )

  A.M=N B.M N C.N M D.

  解:

  当时,2k+1是奇数,k+2是整数,选B

  【例2】定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

  A)1 B)2 C)3 D)4

  分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

  解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

  变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

  A)5个 B)6个 C)7个 D)8个

  变式2:已知{a,b} A {a,b,c,d,e},求集合A.

  解:由已知,集合中必须含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个 .

  【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

  解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

  ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

  ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

  ∴ ∴

  变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

  解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

  ∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

  又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

  分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

  解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

  综合以上各式有B={x|-1≤x≤5}

  变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

  解答:M={-1,3} , ∵M∩N=N, ∴N M

  ①当时,ax-1=0无解,∴a=0 ②

  综①②得:所求集合为{-1,0, }

  【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠,求实数a的取值范围。

  分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

  解答:(1)若 , 在 内有有解

  令当 时,

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程 有实根,求实数a的取值范围。

  解答:

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。一.知识归纳:

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N*

  2.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)补集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,则? A ;

  ②若, ,则 ;

  ③若且 ,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。

  4.有关子集的几个等价关系

  ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

  ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集运算的性质

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

数学高考必考知识点9

  一、排列组合篇

  1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

  2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

  3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

  4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

  5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

  6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

  7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

  8. 会计算事件在n次独立重复试验中恰好发生k次的概率.

  二、立体几何篇

  高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

  知识整合

  1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2. 判定两个平面平行的方法:

  (1)根据定义--证明两平面没有公共点;

  (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

  (3)证明两平面同垂直于一条直线。

  3.两个平面平行的主要性质:

  (1)由定义知:“两平行平面没有公共点”。

  (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

  (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那

  么它们的交线平行“。

  (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

  (5)夹在两个平行平面间的平行线段相等。

  (6)经过平面外一点只有一个平面和已知平面平行。

  以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

  解答题分步骤解答可多得分

  1. 合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

  2. 通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

  3 .解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

  三、数列问题篇

  数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

  近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

  知识整合

  1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

  2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

  3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

  四、导数应用篇

  专题综述

  导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

  1. 导数的常规问题:

  (1)刻画函数(比初等方法精确细微);

  (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

  (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

  2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

  3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

  知识整合

  1. 导数概念的理解。

  2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

  3. 要能正确求导,必须做到以下两点:

  (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

  (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

  五、解析几何(圆锥曲线)

  高考解析几何剖析:

  1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

  2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

  有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

  1、几何问题代数化。

  2、用代数规则对代数化后的问题进行处理。

数学高考必考知识点10

  一、函数的单调性

  在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

  f′(x)≥0?f(x)在(a,b)上为增函数.

  f′(x)≤0?f(x)在(a,b)上为减函数.

  1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分

  不必要条件.

  2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

  3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

  二、函数的极值

  1、函数的极小值:

  函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0 f="" x="">0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

  ②假分数的性质:>;<(b-m>0).

数学高考必考知识点12

  核心考点非常重要。现在离高考时间非常近,满打满算大概40多天的时间,在这样优先的时间里,我们复习肯定要有侧重点。关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。这些内容非常重要。当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

  再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。这里需要有侧重点。

  拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。这是从我们的一个角度来说。

  我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

  应当说我们后面六个大题基本上是围绕着这样六个板块来进行。这六个板块肯定是我们的核心内容之一。再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。有限和无限思想,特殊和一般的思想。

  像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。这个问题并不是很麻烦,不管怎么说肯定需要计算,你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。

数学高考必考知识点13

  表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

  公式运用

  可用于某些分母含有根号的分式:

  1/(3-4倍根号2)化简:

  1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23

  [解方程]

  x^2-y^2=1991

  [思路分析]

  利用平方差公式求解

  [解题过程]

  x^2-y^2=1991

  (x+y)(x-y)=1991

  因为1991可以分成1×1991,11×181

  所以如果x+y=1991,x-y=1,解得x=996,y=995

  如果x+y=181,x-y=11,x=96,y=85同时也可以是负数

  所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995

  或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

  有时应注意加减的过程。

数学高考必考知识点14

  角的概念的推广.弧度制.

  任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

  两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

  正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

  正弦定理.余弦定理.斜三角形解法.

  考试要求

  (1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

  (2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

  (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

  (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

  (5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

  (6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.

  (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

  (8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cotα=1”.

数学高考必考知识点15

  一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

  主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

  二、平面向量和三角函数

  对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

  三、数列

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  四、空间向量和立体几何

  在里面重点考察两个方面:一个是证明;一个是计算。

  五、概率和统计

  概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

  六、解析几何

  这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

  七、压轴题

  同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

  高考数学直线方程知识点:什么是直线方程

  从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

【数学高考必考知识点】相关文章:

高考数学必考知识点11-21

高考数学必考知识点总结11-26

高考数学必考知识点13篇11-22

高考数学必考导数的知识点梳理09-27

高考理科数学的必考知识点整理02-17

高考必考高等数学下册知识点11-08

数学必考知识点09-13

高考数学导数的应用必考知识点整理01-27

高考语文必考知识点08-18

高考物理必考知识点08-24