高考备考

高考圆知识点总结

时间:2022-11-03 09:32:05 高考备考 我要投稿

高考圆知识点总结

  在现实学习生活中,大家对知识点应该都不陌生吧?知识点有时候特指教科书上或考试的知识。哪些知识点能够真正帮助到我们呢?以下是小编为大家整理的高考圆知识点总结,希望对大家有所帮助。

高考圆知识点总结

  高考圆知识点总结1

  1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”

  2、与圆有关的概念

  (1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)

  (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做半圆)

  (3)等圆(半径相等的两个圆叫做等圆)

  3、点和圆的位置关系:

  如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:

  (1)d<r →圆内

  (2)d=r →圆上

  (3)d>r →圆外

  4、三角形的外接圆

  经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。

  一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。

  5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推论:

  (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  (2)平分弧的直径,垂直平分弧所对的弦。

  6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。 推论:半圆(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。

  8、弧长及扇形的面积圆锥的侧面积和全面积

  (1)弧长公式:lnr 180

  nr21lr(2)扇形的面积公式:3602

  (3)圆锥的侧面积公式:rl

  (4)圆锥的表面积公式:rlr

  9、圆与圆的位置关系

  ①两圆外离 d﹥R+r

  ②两圆外切 d=R+r

  ③两圆相交 R-r﹤d﹤R+r(R﹥r)

  ④两圆内切 d=R-r(R﹥r)

  ⑤两圆内含 d﹤R-r(R﹥r)

  高考圆知识点总结2

  1、圆的定义:

  平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,

  若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

  (1)设直线,圆圆心到l的距离为则有

  (2)设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有;;

  注:如圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。

  (3)过圆上一点的切线方程:

  ①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题)。

  ②圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2(课本命题的推广)。

  4、圆与圆的位置关系:

  通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆。

  高考圆知识点总结3

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

  3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

  6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

  圆--⊙半径—r弧--⌒直径—d

  扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的基本性质与定理(27个)

  1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

  2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

  4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5.一条弧所对的圆周角等于它所对的圆心角的一半。

  6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7.不在同一直线上的3个点确定一个圆。

  8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

  9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

  离):

  AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

  10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

  外离P>R+r;外切P=R+r;相交R-r

  1.圆的周长C=2πr=πd

  2.圆的面积S=s=πr?

  3.扇形弧长l=nπr/180

  4.扇形面积S=nπr?/360=rl/2

  5.圆锥侧面积S=πrl

  高考圆知识点总结4

  集合:

  圆:圆可以看作是到定点的距离等于定长的点的集合;

  圆的外部:可以看作是到定点的距离大于定长的点的集合;

  圆的内部:可以看作是到定点的距离小于定长的点的集合

  轨迹:

  1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;

  2、到线段两端点距离相等的点的轨迹是:线段的中垂线;

  3、到角两边距离相等的点的轨迹是:角的平分线;

  4、到直线的距离相等的点的.轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

  5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

  圆周角定理推论:

  圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

  ①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。

  ②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。

  ③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)

  ④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。

  ⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  ⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。

  圆周运动

  1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

  2、描述匀速圆周运动快慢的物理量

  (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

  **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。

  (2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

  (3)周期T,频率f=1/T

  (4)线速度、角速度及周期之间的关系:

  3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

  4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

  5,注意的结论:

  (1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

  (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

  (3)做匀速圆周运动的物体受到的合外力就是向心力。

  6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

  高考圆知识点总结5

  一、圆

  1、圆的有关性质

  在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

  由圆的意义可知:

  圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

  就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

  圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

  圆心相同,半径不相等的两个圆叫同心圆。

  能够重合的两个圆叫等圆。

  同圆或等圆的半径相等。

  在同圆或等圆中,能够互相重合的弧叫等弧。

  二、过三点的圆

  l、过三点的圆

  过三点的圆的作法:利用中垂线找圆心

  定理不在同一直线上的三个点确定一个圆。

  经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

  2、反证法

  反证法的三个步骤:

  ①假设命题的结论不成立;

  ②从这个假设出发,经过推理论证,得出矛盾;

  ③由矛盾得出假设不正确,从而肯定命题的结论正确。

  例如:求证三角形中最多只有一个角是钝角。

  证明:设有两个以上是钝角

  则两个钝角之和>180°

  与三角形内角和等于180°矛盾。

  ∴不可能有二个以上是钝角。

  即最多只能有一个是钝角。

  三、垂直于弦的直径

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

  推理2:圆两条平行弦所夹的弧相等。

  四、圆心角、弧、弦、弦心距之间的关系

  圆是以圆心为对称中心的中心对称图形。

  实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

  顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

  定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

  推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

  五、圆周角

  顶点在圆上,并且两边都和圆相交的角叫圆周角。

  推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

  高考圆知识点总结6

  (一)圆的标准方程

  1.圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆.定点叫圆的圆心,定长叫做圆的半径.

  2.圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.

  说明:

  (1)上式称为圆的标准方程.

  (2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2.

  (3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r.

  (4)确定圆的条件

  由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件.

  (5)点与圆的位置关系的判定

  若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2

  若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2<r2

  (二)圆的一般方程

  任何一个圆的方程都可以写成下面的形式:

  x2+y2+Dx+Ey+F=0①

  将①配方得:

  ②(x+D/2)2+(y+E/2)2=D2+E2-4F/4

  当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆;

  当时,方程①只有实数解,所以表示一个点(-D/2,-E/2);

  当时,方程①没有实数解,因此它不表示任何图形.

  故当时,方程①表示一个圆,方程①叫做圆的一般方程.

  圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:

  (1)和的系数相同,且不等于0;

  (2)没有xy这样的二次项.

  以上两点是二元二次方程表示圆的必要条件,但不是充分条件.

  要求出圆的一般方程,只要求出三个系数D、E、F就可以了.

  (三)直线和圆的位置关系

  1.直线与圆的位置关系

  研究直线与圆的位置关系有两种方法:

  (l)几何法:令圆心到直线的距离为d,圆的半径为r.

  d>r直线与圆相离;d=r直线与圆相切;0≤d

【高考圆知识点总结】相关文章:

高考数学圆的知识点07-31

中考数学圆的知识点总结07-27

中考数学圆知识点总结07-25

小升初数学圆的知识点总结12-13

中考数学圆知识点总结范文04-04

中考数学圆的知识点总结范例07-26

中考数学圆的周长知识点总结09-06

初三数学圆知识点总结07-22

数学圆知识点归纳01-20