高考数学复习平面向量的知识点
在平凡的学习生活中,是不是听到知识点,就立刻清醒了?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?下面是小编整理的高考数学复习平面向量的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
【考纲解读】
1.理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义.
2.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件.
3.理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的'运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
【考点预测】
高考对平面向量的考点分为以下两类:
(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大.
(2)考查平面向量的综合应用.平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强.
【要点梳理】
1.向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;
2.实数与向量的乘积及是一个向量,熟练其含义;
3.两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;
4.两个向量夹角的范围是:[0,π]
5.向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件.
平面向量数学高考一轮复习知识点
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
3.实数与向量的积:实数 与向量 的积是一个向量。
(1)| |=| || |;
(2) 当 a>0时, 与a的方向相同;当a<0时, 与a的方向相反;当 a=0时,a=0.
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( -1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则AOB= ( )叫做向量 与b的夹角。
(2).两个向量的数量积:
已知两个非零向量 与b,它们的夹角为 ,则 b=| ||b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e = e=| |cos (e为单位向量);
b b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
b=b( )b= ( b)= ( b);( +b)c= c+bc.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
【高考数学复习平面向量的知识点】相关文章:
平面向量数学高考一轮复习知识点07-17
数学平面向量知识点06-07
2017广东高考数学平面向量复习资料09-20
2018广东高考数学平面向量复习单选题09-04
数学平面向量的必考知识点06-17
平面向量的数学知识点06-29
高二数学平面向量知识点07-21
高二数学平面向量知识点整理01-26
高二数学平面向量的知识点归纳06-28