- 相关推荐
初一数学重要知识点
漫长的学习生涯中,是不是听到知识点,就立刻清醒了?知识点有时候特指教科书上或考试的知识。掌握知识点有助于大家更好的学习。以下是小编为大家整理的初一数学重要知识点,希望能够帮助到大家。
初一数学重要知识点1
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的.可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
初一数学学习方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。
提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
初一数学重要知识点2
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的.曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
高二上册数学必修一知识点归纳
1、机械振动:机械振动是指物体在平衡位置附近所做的往复运动。
2、回复力:回复力是指振动物体所受到的指向平衡位置的力,是由作用效果来命名的回复力的作用效果总是将物体拉回平衡位置,从而使物体围绕平衡位置做周期性的往复运动。回复力是由振动物体所受力的合力(如弹簧振子)沿振动方向的分力(如单摆)提供的,这就是回复力的来源。
3、平衡位置:平衡位置是指物体在振动中所受的回复力为零的位置,此时振子未必一定处于平衡状态。比如单摆经过平衡位置时,虽然回复力为零,但合外力并不为零,还有向心力。
4、描述振动的物理量:
①位移总是相对于平衡位置而言的,方向总是由平衡位置指向振子所在的位置—总是背离平衡位置向外;
②振幅是物体离开平衡位置的距离,它描述的是振动的强弱,振幅是标量;
③频率是单位时间内完成全振动的次数;
④相位用来描述振子振动的步调。如果振动的振动情况完全相反,则振动步调相反,为反相位。
5、简谐运动:
A、简谐运动的回复力和位移的变化规律;
B、单摆的周期。由本身性质决定的周期叫固有周期,与摆球的质量、振幅(振动的总能量)无关。
6、简谐运动的表达式和图象:x=Asin(ωt+φ0)简谐运动的图象描述的是一个质点做简谐运动时,在不同时刻的位移,因而振动图象反映了振子的运动规律(注意:振动图象不是运动轨迹)。由振动图象还可以确定振子某时刻的振动方向。
7、简谐运动的能量:不计摩擦和空气阻力的振动是理想化的振动,此时系统只有重力或弹力做功,机械能守恒。振动的能量和振幅有关,振幅越大,振动的能量越大。
初一数学重要知识点3
初一数学重要知识点总结
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
初一数学重要知识点归纳
整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
初一数学重要知识点整理
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的'相反数;⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
经典考题
已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值
解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0
所以|a+3|=0,|2b-2|=0,|c-1|=0
即a=-3,b=1,c=1
所以a+b+c=-3+1+1=-1
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数
初一数学重要知识点4
解一元一次方程:
1、解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2、解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3、在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
14、一元一次方程的应用
1、一元一次方程解应用题的类型
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。
2、利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系。
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。
(3)列:根据等量关系列出方程。
(4)解:解方程,求得未知数的值。
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。
初一数学方法技巧
1、请概括的说一下学习的方法
曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
2、请谈谈超前学习的好处
曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”
其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。
3、请谈谈联想与总结
曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的.是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。
4、那么我们怎样预习呢?
曰:“先说说学习的目标:
(1)知道知识产生的背景,弄清知识形成的过程。
(2)或早或晚的知道知识的地位和作用:
(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
再说具体的做法:
(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
(3)对于例题及习题的处理见上面的(2)及下面的第五条。
初一数学重要知识点5
(一)学好初中数学需要养成阅读课本的习惯
前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。数学语言精练、语句严谨;所以只有做到对每个句子、每个概念、每个图表都应细致地阅读分析,领会其内容、含义。才能体会到其中的数学思想方法,并能正确依据数学原理分析它们之间的逻辑关系,达到对材料的.真正理解,形成知识结构。
(二)学好初中数学需要培养“想要听、听得懂、懂得听”的习惯
要做到想要听,就得明白学习数学的意义:在多年的数学学习中,数学真理的绝对性,数学结论的可靠性,数学演算的精确性,数学思维的严密性,点点滴滴地渗入到我们的思想,这些将在我们日后的人生历程中起着重要的作用。要达到听得懂,就必须提前预习,保持专注;要做到懂得听就是明白听课重点。
(三)学好初中数学需要养成良好的作业习惯
做作业前先要复习巩固所学的概念、定理和性质,联想老师所讲过的经典例题。做题时一要看题准确,即文字、数学式子、数学符号等不多看、少看或漏看;二要分得清楚,即能分清题目的条件、结论。由题联想到它考查的知识点。
初一数学重要知识点6
第一章中华文明的起源(1—12)
1、我国境内已知的最早人类是元谋人,距今170万年P2
2、人与动物的根本区别是会不会制造工具P2
3、北京人和山顶洞人生活的时间和地点P1.3.4
4、从猿到人的演变过程中,劳动起了决定作用。P2
5、北京人使用天然火,山顶洞人懂得人工取火并已经掌握了磨光和钻孔技术。P4—5
6、北京人过群居生活,山顶洞人过氏族生活P5
7、河姆渡人生活在长江流域、半坡人生活在黄河流域,都已经使用磨制石器P7—8
8、河姆渡人栽培水稻,半坡人种粟,我国是世界上最早种植水稻和粟的国家。P7—8
9、大汶口文化晚期中出现了私有财产和贫富分化。P7—P8
10、炎帝、黄帝部落结成联盟,形成了日后的华夏族,炎帝、黄帝被尊奉为华夏族的`祖先。P12
11、被称为中华民族“人文初祖”的是黄帝。P13
12、尧舜禹的“禅让”:民主推选部落联盟首领的方法。P14
第二章夏商西周春秋战国(13—40)
1、公元前2070年,禹建立夏朝,这是我国历第一个奴隶制王朝。P15
2、汤灭夏,建立商朝,盘庚迁殷后,商朝统治稳定。P21
3、公元前1046年,周武王经牧野之战灭商,建立周朝,定都镐。P23
4、西周实行分封制,加强了对各地的统治。P23—24
5、公元前771年,西周灭亡。P24
6、商朝的司母戊鼎是世界上已发现的的青铜器,湖南宁乡出土了造型奇特的四羊方尊P26
7、“三星堆”文化遗址出土的青铜面具、大型青铜立人像、青铜神树等引起了中外人士的瞩目。P27
8、农业、畜牧业、手工业和商业的繁荣,形成了我国夏、商西周灿烂的青铜文明。P27
9、公元前770年,周平王东迁洛,史称“东周”。东周分为春秋和战国两个时期。P30
10、春秋五霸:齐桓公、晋文公、楚庄王、吴王夫差、越王勾践。P30—32
11、齐桓公提出“尊王攘夷”的口号。P31
12、决定晋文公成为中原霸主的战役是城濮之战。P32
初一数学重要知识点7
实数
1平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
2立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
3实数
无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的`正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
初一数学重要知识点8
二元一次方程组
1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。注意:一般说二元一次方程有无数个解。
2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。
3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。注意:一般说二元一次方程组只有解(即公共解)。
4、二元一次方程组的解法:
(1)代入消元法;
(2)加减消元法;
(3)注意:判断如何解简单是关键。
※5、一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
一元一次不等式(组)
1、不等式:用不等号,把两个代数式连接起来的式子叫不等式。
2、不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。
3、不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的.集合,叫做这个不等式的解集。
4、一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。
5、一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。
初一数学重要知识点9
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am
(2)(am)n=
(3)(ab)n=
(4)am÷an
(5)a0(a≠0)
(6)a—p=
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a—b)=
完全平方公式:(a+b)2(a—b)2
常用公式:(x+m)(x+n)=
4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余角和互为补角和
6、两直线平行的条件:(角的关系线的.平行)
①相等,两直线平行;
②相等,两直线平行;
③互补,两直线平行。
7、平行线的性质:两直线平行。(线的平行)
8、能判别变量中的自变量和因变量,会列关系式(因变量=自变量与常量的关系)
9、变量中的图象法,注意:
(1)横、纵坐标的对象。
(2)起点、终点不同表示什么意义
(3)图象交点表示什么意义
(4)会求平均值。
10、三角形
(1)三边关系:角的关系
(2)内角关系:
(3)三角形的三条重要线段:
(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(6)等腰三角形:
(a)知边求边、周长方法
(b)知角求角方法
(c)三线合一:
(7)等边三角形:
11、会判轴对称图形,会根据画对称图形,(或在方格中画)
12、常见的轴对称图形有:
13、(1)等腰三角形:对称轴,性质
(2)线段:对称轴,性质
(3)角:对称轴,性质
14、尺规作图:
(1)作一线段等已知线段
(2)作角已知角
(3)作线段垂直平分线
(4)作角的平分线
(5)作三角形
初一数学重要知识点10
抛物线的性质:
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
焦半径:
焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè÷p2,0的距离|PF|=x0+p2.
求抛物线方程的方法:
(1)定义法:根据条件确定动点满足的几何特征,从而确定p的.值,得到抛物线的标准方程。
(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式。从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).
初一数学重要知识点11
一、隋唐科举制度:
北:P20科举制是通过分科考试选拔官吏的制度。隋唐时期创立并完善了科举制度,强调以才能作为选官标准的原则。
二、武则天
北:P13—15武则天是我国历的女皇帝。
武则天统治时期,不拘一格选拔普通地主中的优秀人才。注重减轻农民负担,采取各种措施促进社会生产断续发。当时,人口明显增长,边疆得到巩固和开拓,史称有“贞观遗风”,为唐朝全盛时期的到来奠定了基础。
三、“开元盛世”
北:P15唐玄宗统治前期政局稳定,经济繁荣,被誉为“开元盛世”。
四、唐与吐蕃的交往:
P28吐蕃是今藏族祖先。文成公主入藏与松赞干布联姻,密切了唐蕃经济文化的交流。
五、遣唐使、玄奘西行、鉴真东渡
(一)遣唐使
北:P32遣唐使是日本政府派遣到唐朝进行文化交流的使团;遣唐使把唐朝的典章制度、天文历法、书法艺术、建筑艺术以及生活习俗等带回本国,对日本的生产、生活与社会发展产生了深远影响。
(二)鉴真东渡
北:P33鉴真到达日本除讲授佛经,还详细介绍中斩医药、建筑、雕塑、文学、书法、绘画等技术知识,对中日经济文化交流做出了杰出贡献。(识图P34鉴真东渡示意图)
(三)玄奘西行
北:P35玄奘是唐朝的高僧,为了求取佛经精义,他西行前往佛教圣地天竺。玄奘是第一个系统地把天竺佛教、历史、地理、风土人情等记录下来并介绍到中国的人。(玄奘西行示意图)
六、列举“贞观之治”的主要内容,评价唐太宗:略
经济重心的南移和民族关系的发展
一、中国古代经济重心的南移
北:P64魏晋南北朝以来,全国经济重心出现了南移的趋势。两宋时全国的经济重心从黄河流域转移到长江流域。
二、成吉思汗统一蒙古和忽必烈建立元朝的史实
北:P75—7612,蒙古贵族在斡难河源召开大会,推举铁木真为蒙古族的首领,尊称为“成吉思汗”,建立蒙古政权1260年,成吉思汗之孙忽必烈继承蒙古汗位。1271年,忽必烈改国号为元,建立元朝,第二年定都大都。忽必烈为元世祖。
历史学习方法技巧
一、学会听课
用新的方式听老师复习阶段的辅导课。复习阶段听老师讲课,听什么?听思路,听提炼,听挖掘,听补充、听小结,听解题方法的指导。听课过程中,一有所得,当即记于课本天头地脚处,以供备忘,正如“好记性不如烂笔头”。
二、学会课后自己整理教材
在历史能力测试中,分成两个部分:一是闭卷的选择题;一是开卷的材料分析题。主要考察同学对历史史实的认知和迁移以及运用基本的历史方法解决问题的能力,包括对历史知识的识记、理解和运用。千变万化的能力测试题都离不开考察你对教材的认识。所以,要以不变应万变,抓住教材为本。在整理教材的过程中注意以下几方面:
(1)知识主干化。在知识结构的框架下,记住其中的主干知识,不要孤立的记忆它。所谓的主干知识,是指按课标要求掌握的重大历史事件(或人物)的内容和影响(或作用)。表现在课文中,即是每一课子目的核心内容。这些内容不多,记住的目的是为了突出重点,并能由此而链接更多的知识点,提高对知识的积累量,进而提高分析问题的能力和效力,以及准确性。这部分往往会在闭卷的选择题部分来考察。
(2)知识线索化。在对每一单元知识结构整理的基础上,联系比较上一单元和下一单元的知识,整理出本册书的知识线索,这需要在老师的引导下完成。在知识线索下,加强对知识因果关系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨证、多角度地分析。并要注意这些历史对今天社会建设中的启示。这类知识一般在开卷部分以材料为载体多重设问来体现。有的同学往往认为历史考试中有很大部分是开卷的,所以没必要抓教材,殊不知,在考试中时间紧,如果对教材没整体认识和熟悉,根本没法在短短的时间内完成检测内容。因此,教材知识的`线索化这个环节尤其重要。
(3)注意教材中的插图、文献材料和注释和课文中补充的小字。课文中的插图:可以用来加深对课文中相关知识的理解。首先,要善于观察,抓住其中隐含的历史信息。其次,掌握一些识图的技巧,如,注意地形图中的图示含义、线条的走向和古今地名国名的变化;了解人物图中的神态;发现景物图中的细节和特征等。文献材料:一般在课文中用黑体字表现,它是史实来源的第一手材料或第二手材料,学习时,注意其出处,联系课文相关内容,解读其中语句的含义,这样能帮助我们提高阅读能力,形成论从史出、史证结合的学习方法。小字部分往往容易在检测中以材料的形式出现,考查学生的归纳和知识迁移能力。这个环节的培养有利于我们在考场上把没见过的材料与我们所学的知识结合起来。
三、注意历史复习中的记忆方法。
许多历史知识需要记忆。有好的记忆方法,就能收到事半功倍的效果。历史知识的记忆法很多,最常用最有效的记忆方法有以下几种:浓缩记忆法、图示记忆法、数字归纳记忆法、联想比较记忆法。
初一数学重要知识点12
1、乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数、无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的.平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
【初一数学重要知识点】相关文章:
【必备】初一数学重要的知识点总结11-21
初一英语重要知识点总结05-10
数学初一知识点总结07-04
初一数学知识点04-18
初一数学必考的知识点11-16
重要的物理知识点11-11
初一重要的英语语法知识点05-12
初一下册政治重要知识点总结05-08
初一数学下册知识点总结11-29
初一数学整式知识点汇总07-26