初一数学知识点总结

时间:2024-09-07 10:10:49 初一 我要投稿

[优秀]初一数学知识点总结15篇

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以提升我们发现问题的能力,因此,让我们写一份总结吧。那么总结有什么格式呢?以下是小编为大家整理的初一数学知识点总结,仅供参考,欢迎大家阅读。

[优秀]初一数学知识点总结15篇

初一数学知识点总结1

  1、有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;

  (3)相反数的和为0a+b=0a、b互为相反数。

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  (3)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|。

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数>0,小数—大数<0。

  6、互为倒数:乘积为1的两个数互为倒数。

  注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=—1a、b互为负倒数。

  7、有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8、有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10、有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11、有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。

  12、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  13、有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a—b)n=—(b—a)n,当n为正偶数时:(—a)n=an或(a—b)n=(b—a).乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位。

  15、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

  19、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

  第二章整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。7.合并同类项法则:系数相加,字母与字母的指数不变。

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“—”号,括号里的各项都要变号。

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

  10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的'指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  第三章一元一次方程

  1.等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”!

  2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

  3.方程:含未知数的等式,叫方程。

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

  5.移项:改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式性质1。

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。

  9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

  10.列一元一次方程解应用题:

  (1)读题分析法:…………多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。(2)画图分析法:…………多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度时间;

  (2)工程问题:工作量=工效工时;

  (3)比率问题:部分=全体比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

  (5)商品价格问题:售价=定价折,利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  12、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”

  13、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。

  14、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  15、平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。

  注意:

  (1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  16、平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。

  (3)平行线的定义。

  17、垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

  18、垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

  19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。

  20、同一平面内,两条直线的位置关系:相交或平行。

初一数学知识点总结2

  (一)有理数及其运算

  一、有理数的基础知识

  1、三个重要的定义:

  (1)正数:像1、2.5、这样大于0的数叫做正数;

  (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;

  (3)0即不是正数也不是负数.

  2、有理数的分类:

  (1)按定义分类:

  正整数整数0负整数有理数正分数分数负分数

  (2)按性质符号分类:

  正整数正有理数正分数有理数0

  负整数负有理数负分数3、数轴

  数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.

  4、相反数

  如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.

  5、绝对值

  (1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离

  (2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:

  (a0)aa0(a0)

  a(a0)

  (3)两个负数比较大小,绝对值大的反而小

  二、有理数的运算

  1、有理数的加法

  (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.

  (2)有理数加法的运算律:

  加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)

  用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

  2、有理数的减法

  (1)有理数减法法则:减去一个数等于加上这个数的相反数.

  (2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的'符号,没有把减数变成相反数.

  (3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;

  3、有理数的乘法

  (1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0

  (2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac

  (3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.

  4、有理数的除法

  有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.

  5、有理数的乘法

  (1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.

  (2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算

  (1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.

  (2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.

  n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列(3)一元一次方程

  一、方程的有关概念

  1、方程的概念:

  (1)含有未知数的等式叫方程.

  (2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.

  2、等式的基本性质:

  (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc

  (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或

  abcc

  (3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a

  (4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换

  二、解方程

  1、移项的有关概念:

  把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.

  2、解一元一次方程的步骤:(1)去分母等式的性质2

  注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.

  (2)去括号去括号法则、乘法分配律

  严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.

  (3)移项等式的性质1

  越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面

  (4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变

  (5)系数化为1等式的性质2

  两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒

  (6)检验

  二、列方程解应用题

  1、列方程解应用题的一般步骤:

  (1)将实际问题抽象成数学问题;

  (2)分析问题中的已知量和未知量,找出等量关系;

  (3)设未知数,列出方程;

  (4)解方程;

  (5)检验并作答.

  2、一些实际问题中的规律和等量关系:

  (1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围

  (2)几种常用的面积公式:

  长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;

  梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积.

  (3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长

  (4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.

  (5)打折销售这类题型的等量关系是:利润=售价成本.

  (6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.

  (7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.

  (8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程

  (9)关于储蓄中的一些概念:

  本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.

  (4)图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形

  平面图形:三角形、四边形、圆等.主(正)视图从正面看

  2、几何体的三视图侧(左、右)视图从左(右)边看

  俯视图从上面看

  (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型

  4、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念

  图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长2、直线的性质

  经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法(1)度量法(2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系

  (1)点在直线上(2)点在直线外.(三)角

  1、角:由公共端点的两条射线所组成的图形叫做角

  2、角的表示法(四种):

  3、角的度量单位及换算

  4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90°

初一数学知识点总结3

  角的种类

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  一元一次方程组的解法

  一般步骤:

  第一步:去分母,在方程两边同乘以所有分母的最小公倍数.注意:分子要加括号,不要漏乘不含有分母的项;

  第二步:去括号,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号内各项,若括号前面是“ - ”,去括号后括号内各项都要变号;

  第三步:移项,把含有未知数的项移到方程的一边,其他项移到另一边.注意:移项要变号,不移的项不变号,移项时不要漏项;

  第四步:合并同类项,把方程化为 ax=b(a≠0)的形式.注意:系数相加,字母部分不变;

  第五步:系数化为 1,把方程两边同除以未知数的系数 a,得到方程的解 x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置颠倒.

  整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

  2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  5.常数项:不含字母的项叫做常数项。

  6.多项式的排列

  (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  7.多项式的排列时注意:

  (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a.先确认按照哪个字母的指数来排列。

  b.确定按这个字母向里排列,还是向外排列。

  (3)整式:

  单项式和多项式统称为整式。

  8. 多项式的加法:

  多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

  9.同类项:所含字母相同,并且相同字母的'次数也分别相同的项叫做同类项。

  10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

  第一章 有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

  第二章 一元一次方程

  2.1 从算式到方程

  方程是含有未知数的等式。

  方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

  等式的性质:

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  2.2 从古老的代数书说起——一元一次方程的讨论(1)

  把等式一边的某项变号后移到另一边,叫做移项。

  第三章 图形认识初步

  3.1 多姿多彩的图形

  几何体也简称体(solid)。包围着体的是面(surface)。

  3.2 直线、射线、线段

  线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

  连接两点间的线段的长度,叫做这两点的距离。

  3.3 角的度量

  1度=60分 1分=60秒 1周角=360度 1平角=180度

  3.4 角的比较与运算

  如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

  如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

  等角(同角)的补角相等。

  等角(同角)的余角相等。

  第四章 数据的收集与整理

  收集、整理、描述和分析数据是数据处理的基本过程。

  第五章 相交线与平行线

  5.1 相交线

  对顶角(vertical angles)相等。

  过一点有且只有一条直线与已知直线垂直(perpendicular)。

  连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

  5.2 平行线

  经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  直线平行的条件:

  两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

  两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

  两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

  5.3 平行线的性质

  两条平行线被第三条直线所截,同位角相等。

  两条平行线被第三条直线所截,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。

  判断一件事情的语句,叫做命题(proposition)。

  第六章 平面直角坐标系

  6.1 平面直角坐标系

  含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

  初一数学知识点整理7-10章

  第七章 三角形

  7.1 与三角形有关的线段

  三角形(triangle)具有稳定性。

  7.2 与三角形有关的角

  三角形的内角和等于180度。

  三角形的一个外角等于与它不相邻的两个内角的和。

  三角形的一个外角大于与它不相邻的任何一个内角

  7.3 多边形及其内角和

  n边形内角和等于:(n-2)?180度

  多边形(polygon)的外角和等于360度。

  第八章 二元一次方程组

  8.1 二元一次方程组

  方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

  把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

  使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

  8.2 消元

  将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

  第九章 不等式与不等式组

  9.1 不等式

  用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

  使不等式成立的未知数的值叫做不等式的解。

  能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

  含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

  不等式的性质:

  不等式两边加(或减)同一个数(或式子),不等号的方向不变。

  不等式两边乘(或除以)同一个正数,不等号的方向不变。

  不等式两边乘(或除以)同一个负数,不等号的方向改变。

  三角形中任意两边之差小于第三边。

  三角形中任意两边之和大于第三边。

  9.3 一元一次不等式组

  把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

  第十章 实数

  10.1 平方根

  如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

  a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

  0的算术平方根是0。

  如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

  求一个数a的平方根的运算,叫做开平方(extraction of square root)。

  10.2 立方根

  如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

  求一个数的立方根的运算,叫做开立方(extraction of cube root)。

  10.3 实数

  无限不循环小数又叫做无理数(irrational number)。

  有理数和无理数统称实数(real number)。

初一数学知识点总结4

  一、方程的有关概念

1.方程:含有未知数的等式就叫做方程。

  2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

  注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

  二、等式的性质

  (1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么ac=bc

  (2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

  四、去括号法则

  1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1.去分母(方程两边同乘各分母的最小公倍数)

  2.去括号(按去括号法则和分配律)

  3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4.合并(把方程化成ax=b(a0)形式)

  5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

  六、用方程思想解决实际问题的一般步骤

  1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

  2.设:设未知数(可分直接设法,间接设法)。

  3.列:根据题意列方程。

  4.解:解出所列方程。

  5.检:检验所求的解是否符合题意。

  6.答:写出答案(有单位要注明答案)。

  七、有关常用应用类型题及各量之间的关系

  1、和、差、倍、分问题:

  (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

  (2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

  2、等积变形问题:

  “等积变形”是以形状改变而体积不变为前提。常用等量关系为:

  ①形状面积变了,周长没变;

  ②原料体积=成品体积。

  3、劳力调配问题:

  这类问题要搞清人数的变化,常见题型有:

  (1)既有调入又有调出。

  (2)只有调入没有调出,调入部分变化,其余不变。

  (3)只有调出没有调入,调出部分变化,其余不变。

  4、数字问题

  (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c

  (2)数字问题中一些表示:两个连续整数之间的.关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。

  5、工程问题:

  工程问题中的三个量及其关系为:工作总量=工作效率工作时间

  6、行程问题:

  (1)行程问题中的三个基本量及其关系:路程=速度时间。

  (2)基本类型有

  ①相遇问题;

  ②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

  7、商品销售问题

  有关关系式:

  商品利润=商品售价商品进价=商品标价折扣率商品进价

  商品利润率=商品利润/商品进价

  商品售价=商品标价折扣率

  8、储蓄问题

  (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

  (2)利息=本金利率期数

  本息和=本金+利息

  利息税=利息税率(20%)

  今天的内容就介绍这里了。

初一数学知识点总结5

  第一章:丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  ①几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  ②点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形(按名称分)

  柱:

  ①圆柱

  ②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  锥:

  ①圆锥

  ②棱锥

  球

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:

  11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

  6、截一个正方体:

  用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  7、三视图:

  物体的三视图指主视图、俯视图、左视图。

  主视图:从正面看到的图,叫做主视图。

  左视图:从左面看到的图,叫做左视图。

  俯视图:从上面看到的图,叫做俯视图。

  第二章:有理数及其运算

  1、有理数的分类

  ①正有理数

  有理数{ ②零

  ③负有理数

  有理数{ ①整数

  ②分数

  2、相反数:

  只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

  若|a|=a,则a≥0;

  若|a|=-a,则a≤0。

  正数的绝对值是它本身;

  负数的绝对值是它的相反数;

  0的绝对值是0。

  互为相反数的两个数的绝对值相等。

  6、有理数比较大小:

  正数大于0,负数小于0,正数大于负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  7、有理数的运算:

  ①五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;

  绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  ②有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  ③运算律(5种)

  加法交换律

  加法结合律

  乘法交换律

  乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成a×

  10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

  第三章:整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:

  ①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数。

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

  2、整式:单项式和多项式统称为整式。

  ①单项式:

  都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:

  单独的一个数或一个字母也是单项式;

  单独一个非零数的次数是0;

  当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:

  几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  ③同类项:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:

  ①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

  ②同类项与系数无关,与字母的'排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:

  把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章基本平面图形

  1、线段、射线、直线

  名称

  表示方法

  端点

  长度

  直线

  直线AB(或BA)

  直线l

  无端点

  无法度量

  射线

  射线OM

  1个

  无法度量

  线段

  线段AB(或BA)

  线段l

  2个

  可度量长度

  2、直线的性质

  ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  ②过一点的直线有无数条。

  ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  3、线段的性质

  ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  ③线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  ②角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:

  一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

  终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:

  由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。

  连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

  12、圆:

  平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

  固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

  由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

  顶点在圆心的角叫做圆心角。

  第五章一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  ①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  ②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:

  把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  6、解一元一次方程的一般步骤:

  ①去分母

  ②去括号

  ③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

  ④合并同类项

  ⑤将未知数的系数化为1

  第六章数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。

  其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学知识点总结6

  第一章有理数

  1.有理数:

  (1)凡能写成

  q(p,q为整数且p0)形式的数,都是有理数,整数和分数统称有理数.p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数正分数整数零

  (2)有理数的分类:

  ①有理数零

  ②有理数负整数负整数正分数负有理数分数负分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:

  数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.(4)相反数的商为-1.

  (5)相反数的绝对值相等

  4.绝对值:

  (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  a(a0)a(a0)a(2)绝对值可表示为:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非负数,即|a|≥0,非负性;

  5.有理数比大小:

  (1)正数永远比0大,负数永远比0小;

  (2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  6.倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  等于本身的数汇总:

  相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.

  7.有理数加法法则:X|k|b|1.c|o|m

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;

  (2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

  (2)任何数与零相乘都得零;

  (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(简便运算)

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a是重要的非负数,即a≥0;若a+|b|=0a=0,b=0;

  (4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  0.120.01211

  (5)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100222a0

  15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a

  16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.

  17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

  18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

  第二章整式的加减

  1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

  2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

  5.整式单项式多项式(整式是代数式,但是代数式不一定是整式)。

  6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的`排列顺序无关)。

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

  第三章一元一次方程

  1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:

  等式性质

  1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质

  2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.

  3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

  5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  8.一元一次方程解法的一般步骤:化简方程----------分数基本性质

  去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)

  合并同类项--------合并后符号系数化为1---------除前面

  9.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  10.列方程解应用题的常用公式:

  (1)行程问题:路程=速度时间速度路程路程时间;时间速度工作量工作量工时;工时工效

  (2)工程问题:工作量=工作效率工作时间工效工程问题常用等量关系:先做的+后做的=完成量

  (3)顺水逆水问题:

  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程

  (4)商品利润问题:售价=定价几折售价成本,利润率100%;成本10利润问题常用等量关系:售价-进价=利润

  (5)配套问题:

  (6)分配问题

  第四章图形初步认识

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等.

  1、几何图形平面图形:三角形、四边形、圆、多边形等.

  主视图---------从正面看

  2、几何体的三视图左视图---------从左边看俯视图---------从上面看

  (1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.

  (2)能根据三视图描述基本几何体或实物原型

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.

  4、点、线、面、体

  (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.

  (2)点动成线,线动成面,面动成体.

  (二)直线、射线、线段

  1、基本概念名称直线射线线段aaa图形ABBBAA端点个数表示法作法叙述延长无直线a直线AB(BA)作直线a作直线AB;向两端无限延长一个射线a射线AB作射线a作射线AB向一端无限延长两个线段a线段AB(BA)作线段a;作线段AB;连接AB不可延长

  2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的长短比较方法

  (1)度量法

  (2)叠合法

  (3)圆规截取法

  5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:

  AMB

  符号:若点M是线段AB的中点,则AM=BM=

  6、线段的性质

  1AB,AB=2AM=2BM.

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身)

  8、点与直线的位置关系

  (1)点在直线上(或者直线经过点)

  (2)点在直线外(或者直线不经过点).

  (三)角

  1、角:有公共端点的两条射线所组成的图形叫做角.

  2、角的表示法(四种):表示方法图例记法适用范围A任何情况下都适应。表示端O用三个大写字母表示AOB或BOAB点的字母必须写在中间。以这个点为顶点的角只有用一个大写字母表示AA一个。任何情况下都适用。但必须用数字表示11在靠近顶点处加上弧线表示角的范围,并注上数字或用希腊字母表示希腊字母。

  3、角的度量单位及换算(度””、分””、秒””)60进制1=60=3600,1=60;1=(4、角的分类∠β范围锐角直角钝角0<∠β<90°∠β=90°90°

初一数学知识点总结7

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的'规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一数学知识点总结8

  本章重点:一元一次不等式的解法,

  本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。

  本章关键:彻底弄清不等式和等式的基本性质的区别.

  (1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,它是解不等式的理论依据.

  (3)分清不等式的解集和解不等式是两个完全不同的概念.(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

  (6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

  (7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集第六章:

  1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

  2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

  3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题.

  本章的难点是:

  1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.第七章

  本章重点是:整式的乘除运算,特别是对幂的.运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

  2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

  3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算,

  5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.第八章:

  1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理

  2、定义、命题、公理、定理3、简单几何图形中的推理4、余角、补交、对顶角5、平行线的判定判定:一个公理两个定理。

  公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).平行线的性质:

  两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补

  由图形的“位置关系”确定“数量关系”第九章:

  重点:因式分解的方法,

  难点:分析多项式的特点,选择适合的分解方法1.因式分解的概念;

  2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)3.运用因式分解解决一些实际问题.(包括图形习题)第十章:

  重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题.

  1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图.

  3.应用统计知识解决实际问题能解决与统计相关的综合问题.

初一数学知识点总结9

  一、隋唐科举制度:

  北:P20科举制是通过分科考试选拔官吏的制度。隋唐时期创立并完善了科举制度,强调以才能作为选官标准的原则。

  二、武则天

  北:P13—15武则天是我国历的女皇帝。

  武则天统治时期,不拘一格选拔普通地主中的优秀人才。注重减轻农民负担,采取各种措施促进社会生产断续发。当时,人口明显增长,边疆得到巩固和开拓,史称有“贞观遗风”,为唐朝全盛时期的到来奠定了基础。

  三、“开元盛世”

  北:P15唐玄宗统治前期政局稳定,经济繁荣,被誉为“开元盛世”。

  四、唐与吐蕃的交往:

  P28吐蕃是今藏族祖先。文成公主入藏与松赞干布联姻,密切了唐蕃经济文化的交流。

  五、遣唐使、玄奘西行、鉴真东渡

  (一)遣唐使

  北:P32遣唐使是日本政府派遣到唐朝进行文化交流的使团;遣唐使把唐朝的典章制度、天文历法、书法艺术、建筑艺术以及生活习俗等带回本国,对日本的生产、生活与社会发展产生了深远影响。

  (二)鉴真东渡

  北:P33鉴真到达日本除讲授佛经,还详细介绍中斩医药、建筑、雕塑、文学、书法、绘画等技术知识,对中日经济文化交流做出了杰出贡献。(识图P34鉴真东渡示意图)

  (三)玄奘西行

  北:P35玄奘是唐朝的高僧,为了求取佛经精义,他西行前往佛教圣地天竺。玄奘是第一个系统地把天竺佛教、历史、地理、风土人情等记录下来并介绍到中国的人。(玄奘西行示意图)

  六、列举“贞观之治”的主要内容,评价唐太宗:

  经济重心的南移和民族关系的发展

  一、中国古代经济重心的南移

  北:P64魏晋南北朝以来,全国经济重心出现了南移的趋势。两宋时全国的经济重心从黄河流域转移到长江流域。

  二、成吉思汗统一蒙古和忽必烈建立元朝的史实

  北:P75—7612,蒙古贵族在斡难河源召开大会,推举铁木真为蒙古族的首领,尊称为“成吉思汗”,建立蒙古政权1260年,成吉思汗之孙忽必烈继承蒙古汗位。1271年,忽必烈改国号为元,建立元朝,第二年定都大都。忽必烈为元世祖。

  历史学习方法技巧

  一、学会听课

  用新的方式听老师复习阶段的辅导课。复习阶段听老师讲课,听什么?听思路,听提炼,听挖掘,听补充、听小结,听解题方法的指导。听课过程中,一有所得,当即记于课本天头地脚处,以供备忘,正如“好记性不如烂笔头”。

  二、学会课后自己整理教材

  在历史能力测试中,分成两个部分:一是闭卷的选择题;一是开卷的材料分析题。主要考察同学对历史史实的认知和迁移以及运用基本的历史方法解决问题的能力,包括对历史知识的识记、理解和运用。千变万化的能力测试题都离不开考察你对教材的认识。所以,要以不变应万变,抓住教材为本。在整理教材的过程中注意以下几方面:

  (1)知识主干化。在知识结构的框架下,记住其中的主干知识,不要孤立的记忆它。所谓的主干知识,是指按课标要求掌握的重大历史事件(或人物)的内容和影响(或作用)。表现在课文中,即是每一课子目的核心内容。这些内容不多,记住的目的是为了突出重点,并能由此而链接更多的知识点,提高对知识的积累量,进而提高分析问题的能力和效力,以及准确性。这部分往往会在闭卷的选择题部分来考察。

  (2)知识线索化。在对每一单元知识结构整理的基础上,联系比较上一单元和下一单元的知识,整理出本册书的知识线索,这需要在老师的引导下完成。在知识线索下,加强对知识因果关系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨证、多角度地分析。并要注意这些历史对今天社会建设中的启示。这类知识一般在开卷部分以材料为载体多重设问来体现。有的同学往往认为历史考试中有很大部分是开卷的,所以没必要抓教材,殊不知,在考试中时间紧,如果对教材没整体认识和熟悉,根本没法在短短的时间内完成检测内容。因此,教材知识的线索化这个环节尤其重要。

  (3)注意教材中的插图、文献材料和注释和课文中补充的.小字。课文中的插图:可以用来加深对课文中相关知识的理解。首先,要善于观察,抓住其中隐含的历史信息。其次,掌握一些识图的技巧,如,注意地形图中的图示含义、线条的走向和古今地名国名的变化;了解人物图中的神态;发现景物图中的细节和特征等。文献材料:一般在课文中用黑体字表现,它是史实来源的第一手材料或第二手材料,学习时,注意其出处,联系课文相关内容,解读其中语句的含义,这样能帮助我们提高阅读能力,形成论从史出、史证结合的学习方法。小字部分往往容易在检测中以材料的形式出现,考查学生的归纳和知识迁移能力。这个环节的培养有利于我们在考场上把没见过的材料与我们所学的知识结合起来。

  三、注意历史复习中的记忆方法。

  许多历史知识需要记忆。有好的记忆方法,就能收到事半功倍的效果。历史知识的记忆法很多,最常用最有效的记忆方法有以下几种:浓缩记忆法、图示记忆法、数字归纳记忆法、联想比较记忆法。

初一数学知识点总结10

  1.同一平面内,两直线不平行就相交。

  2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

  为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其

  中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足

  5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短;

  7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在

  两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

  10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

  11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:

  1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。

  12.★命题:“如果+题设,那么+结论。”

  三角形和多边形

  1.三角形内角和为180°

  2.构成三角形满足的条件:三角形两边之和大于第三边。

  判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)

  3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高

  2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD

  是斜边AB

  上的高,则有ACBCCDAB

  A

  CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等)

  【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角:

  【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为

  【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。

  单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种

  (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与

  0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。

  【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少?

  平面直角坐标系

  ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点

  ▲建系原则:原点、正方向、横纵轴名称(即x、y)

  √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系

  ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★

  点的平移规律(P51归纳)

  例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳)

  重点题目:P53练习;P543、4题;P557题。2.对称规律▲

  关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数

  关于原点对称,横、纵坐标同时取相反数

  例:P点的坐标为(5,7),则P点

  (1.)关于x轴对称的`点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★

  假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵

  组距轴为“频数”

  6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x

  轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题

  二元一次方程组和不等式、不等式组

  1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分)

  3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342

  步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题)

  数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。

  9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组

  4

  在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。

初一数学知识点总结11

  二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列

  易解”;

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知

  数的关系.

  一元一次不等式(组)

  1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

  3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不

  博源教育曾老师1378780036612

  等式的解集.

  4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).

  5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质

  3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

  6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;

  注意:ab>0

  abab0a0b0或a0b0;

  amamab<0

  0a0b0或a0b0;ab=0a=0或b=0;a=m.

  7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

  8.一元一次不等式组的解集的四种类型:设a>b

  xaxb不等式组的解集xaxb是xa不等式的组解集是xbba>ba>xaxb不等式组的解集是axbxaxb不等式组解集是空集ba>xy0x、y是正数xy0ba>,

  9.几个重要的判断:,

  xy0x、y是负数xy0xy0x、y异号且正数绝对值大,xy0-2-

  xy0x、y异号且负数绝对值大xy0.博源教育曾老师1378780036613

  整式的乘除

  1.同底数幂的乘法:aman=am+n,底数不变,指数相加.

  2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:

  (1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:

  ①(a+b)=a+2ab+b,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的'平方和,减去它们的积的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

  p(1)若二次三项式x+px+q是完全平方式,则有关系式:22

  222

  2q;

  (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax+bx+c值的符号;②当x=h时,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22

  21x21xx22.

  8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0).注意:00,0-2无意义;

  博源教育曾老师1378780036614

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.

  10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.

  11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.

  ※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线

  几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

  1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)OA几何表达式举例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:(1)∵C是AB中点∴AC=BCCB点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)A(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

  博源教育曾老师137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b5.补角重要性质:同角或等角的补角相等.(如图)13几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老师1378780036616∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)CAOBD几何表达式举例:∵∠AOC=∠DOB∴8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)AC几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACEBDF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)

  -6-

  几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老师1378780036617(3)若同旁内角互补,两条直线平行.(如图)11.平行线性质定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD几何表达式举例:(1)∵AB∥CD(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

  一基本概念:

  直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:

  1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.

  3.有关垂线的定理:

  (1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

  博源教育曾老师1378780036618

  三公式:

  直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:

  1.定义有双向性,定理没有.

  2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.

  3.命题可以写为“如果那么”的形式,“如果”是命题的条件,“那么”是命题的结论.

  4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.

  6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:

初一数学知识点总结12

  第一章:有理数

  ★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。

  ★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。

  (1)在直线上任意取一点表示数0,这个点叫做原点;

  (2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,

  依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。

  ★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。

  ★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。

  由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  ★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:(1)正数大于0,0大于负数;正数大于负数;(2)两个负数,绝对值大的反而小。

  备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。

  ★有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3、一个数同0相加,仍是这个数。

  ★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】

  ★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).

  ★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

  备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ★有理数中仍然有:乘积是1的两个数互为倒数。

  ★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。

  ★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac

  ★有理数除法法则:除以一个不等于0的'数,等于乘上这个数的倒数。

  备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  ★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。

  备注:负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数。0的任何正整数次幂都是0。

  ★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,最后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。

  ★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)

  ★近似数与准确数的接近程度,可以用精确度表示。

  ★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章:整式的加减(为一元一次方程的学习打下基础)

  ◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。

  ◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  ◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。

  ◆多项式里次数最高项的次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。

  ◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

  ◆把多项式中的同类项合并成一项,叫做合并同类项。

  ◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  第三章:一元一次方程

  ▲含有未知数的等式叫方程(equation)。

  ▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。

  2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元一次方程分析和解决实际问题的基本过程如下:

  (实际问题)设未知数,列方程数学问题(一元一次方程)解方程(数学问题的解)检验(实际问题的答案)。

  ▲解方程的具体步骤:1、去分母(方程两边同乘各分母的最小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。

  ▲实际问题与一元一次方程:一元一次方程是最简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。

  第四章:图形认识的初步

  ※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象

  之一。几何图形又分为立体图形和平面图形。

  ※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。

  ※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。

  ※两点的所有连线中,线段最短。简述:两点之间,线段最短。※连接两点间的线段的长度,叫做中两点的距离(distance)。

  ※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。

  1纳米等于十亿分之一米。

  ※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812

  均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。

  ※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。

  ※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。

  ※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。

  ※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  ※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。

  ※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。

  ※上北下南;左西右东。西北,即是北偏西45度。

  第五章平行线与相交线

  一.台球桌面上的角

  ※1.互为余角和互为补角的有关概念与性质

  如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;

  注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

  它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。

  二.探索直线平行的条件

  ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

  三.平行线的特征

  ※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

  四.用尺规作线段和角※

  1.关于尺规作图

  尺规作图是指只用圆规和没有刻度的直尺来作图。

  ※2.关于尺规的功能

  直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

  圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

初一数学知识点总结13

  1、单项式的定义:

  由数或字母的积组成的式子叫做单项式。

  说明:单独的一个数或者单独的一个字母也是单项式.

  2、单项式的系数:

  单项式中的数字因数叫这个单项式的系数.

  说明:

  ⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32

  系数是1;4.8a的系数是4.8; 3

  ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,4xy2的系数是4;2x2y的系数是4;

  ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如ab的系数是-1;ab的系数是1;

  ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的'一部分,而不能当成字母。如2πxy的系数就是2。

  3、单项式的次数:

  一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  说明:

  ⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1

  的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,而不是7次,应注意字母z的指数是1而不是0;

  ⑵单项式的指数只和字母的指数有关,与系数的指数无关。

  ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;

  4、在含有字母的式子中如果出现乘号,通常将乘号写作“x ”或者省略不写。

  5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

初一数学知识点总结14

  相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

  2代数式求值

  (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

  (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

  题型简单总结以下三种:

  ①已知条件不化简,所给代数式化简;

  ②已知条件化简,所给代数式不化简;

  ③已知条件和所给代数式都要化简.

  3由三视图判断几何体

  (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的`前面、上面和左侧面的形状,然后综合起来考虑整体形状.

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

  ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

  ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

  ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法

初一数学知识点总结15

  初一数学(上)应知应会的知识点代数初步知识

  1.代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

  3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,.

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:

  (1)同号两数相加,取相同的'符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.

  15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

  19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程

  1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解).10.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)比率问题:部分=全体比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折,利润=售价-成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.

【初一数学知识点总结】相关文章:

数学初一知识点总结07-04

初一数学下知识点总结12-07

初一数学知识点的总结11-07

初一数学下册知识点总结11-29

初一数学棱锥知识点总结11-29

初一数学知识点总结07-11

人教版初一数学知识点总结04-24

(荐)初一数学知识点总结07-12

【必备】初一数学重要的知识点总结11-21

初一数学上册知识点总结11-23