初一数学知识点

时间:2023-08-01 16:41:13 初一 我要投稿

初一数学知识点20篇

  上学期间,看到知识点,都是先收藏再说吧!知识点就是掌握某个问题/知识的学习要点。哪些才是我们真正需要的知识点呢?以下是小编为大家整理的初一数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学知识点20篇

  初一数学知识点1

  一、多姿多彩的图形

  1.从实物中抽象出的各种图形统称为几何图形。

  2.点、线、面、体

  A.点:线和线相交的地方。

  B.线:面和面相交的地方,线可分为直线、射线、线段

  C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。

  D.面:包围着体的是面,面可分为平的面、曲的面。

  二、直线、射线、线段

  1.两点确定一条直线

  2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

  3.两点之间,线段最短。

  4.连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.有且只有一个角

  2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。

  3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″

  4.角的.平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

  B.角平分线上的一点到角的两边距离相等。

  四、线段、射线和直线的联系与区别

  联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.

  初一数学知识点2

  1。单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

  2。单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的`次数。

  3。多项式:几个单项式的和叫多项式。

  4。多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  5。整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

  6。同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  7。合并同类项法则:系数相加,字母与字母的指数不变。

  8。去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是—号,括号里的各项都要变号。

  9。整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

  10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  初一数学知识点3

  3.1 多姿多彩的图形

  现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

  3.1.1 立体图形与平面图形

  长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

  长方形、正方形、三角形、圆等都是平面图形。

  许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

  3.1.2 点、线、面、体

  几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

  包围着体的是面。面有平的面和曲的面两种。

  面和面相交的地方形成线。

  线和线相交的地方是点。

  几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  3.2 直线、射线、线段

  经过两点有一条直线,并且只有一条直线。

  两点确定一条直线。

  点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

  直线桑一点和它一旁的部分叫做射线。

  两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

  3.3 角的度量

  角也是一种基本的几何图形。

  度、分、秒是常用的角的度量单位。

  把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。

  3.4角的比较与运算

  3.4.1角的比较

  从一个角的`顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

  3.4.2余角和补角

  如果两个角的和等于90(直角),就说这两个角互为余角。

  如果两个角的和等于180(平角),就说这两个角互为补角。

  等角的补角相等。

  等角的余角相等。

  初一数学知识点4

  1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)

  2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

  3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

  4、特殊位置的点的坐标的特点:

  (1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

  (2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

  (3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

  5、点到轴及原点的距离

  点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的`平方再开根号;

  在平面直角坐标系中对称点的特点:

  1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

  2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

  3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

  各象限内和坐标轴上的点和坐标的规律:

  第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)

  x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)

  x轴上的点纵坐标为0,y轴横坐标为0。

  初一数学知识点5

  1、正数:像小学学过的大于0的数叫做正数。

  2、负数:在正数前面加上负号“-”的数叫做负数。

  3、正数负数的判断方法:

  ⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

  ⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的`则-a是负数,如a是0则-a是0。

  4、0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

  5、具有相反意义的量;

  6、正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

  初一数学知识点6

  一.直线、射线、线段三者的区别与联系:

  二.线段的中点:把一条线段分成两条相等的线段的点,叫做线段的'中点。

  三.直线的基本性质:

  1.两条直线相交,只有一个交点;

  2.经过两点有且只有一条直线,即:两点确定一条直线。

  四.线段的性质:

  所有连结两点的线中,线段最短,即:两点之间线段最短。

  初一数学知识点7

  正数和负数

  ⒈、正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的'数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:—8℃

  3、0表示的意义

  (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

  (2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1、有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

  初一数学知识点8

  【核心提示】

  一元一次方程的核心问题是解方程和列方程解应用题。解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。

  【典型例题】

  例1已知方程2x+3=2a与2x+a=2的解相同,求a的'值.

  分析因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x,可把2x整体代入.

  解由2x+3=2a,得2x=2a-3.

  把2x=2a-3代入2x+a=2得

  2a-3+a=2,

  3a=5,

  分析这是一个非常好的题目,包括了去分母容易错的地方,去括号忘变号的情况.

  解两边同时乘以6,得

  6x-3(x-1)=12-2(x+1)

  去分母,得

  6x-3x+3=12-2x-2

  6x-3x+2x=12-2-3

  5x=7

  例4解方程│x-1│+│x-5│=4

  初一数学知识点9

  1.数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

  可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的`。

  2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是-1,无最小的负整数

  5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,,则a=0

  初一数学知识点10

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解。

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解)。

  4.二元一次方程组的解法:

  (1)代入消元法;(2)加减消元法;

  (3)注意:判断如何解简单是关键。

  ※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解。

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

  一元一次不等式(组)

  1.不等式:用不等号,把两个代数式连接起来的式子叫不等式。

  2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的'方向不变;

  不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。

  3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。

  4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。

  5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。

  初一数学知识点11

  一、数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  二、相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  三、绝对值

  1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  ③有理数的绝对值都是非负数.

  2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零.

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  初一数学必考知识点:有理数大小比较

  1.有理数的大小比较

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的.大小,利用绝对值比较两个负数的大小。

  2.有理数大小比较的法则:

  ①正数都大于0;

  ②负数都小于0;

  ③正数大于一切负数;

  ④两个负数,绝对值大的其值反而小。

  规律方法·有理数大小比较的三种方法:

  (1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  (2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

  (3)作差比较:

  若a﹣b>0,则a>b;

  若a﹣b<0,则a

  若a﹣b=0,则a=b.

  初一数学必考知识点:相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数.

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  初一数学知识点12

  七上第三章 整式及其加减

  1.字母表示数

  1)字母表示运算律 2)字母表示计算公式

  字母可以表示任何数

  2.代数式

  1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.

  2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”.

  ②除法一般写成分数形式

  ③ 如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。

  3.整式

  1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式.

  ① 系数:单项式中的数字因数(包括其前面的符号)

  ② 次数:单项式中,所有字母的指数的和;单独的数字是0次单项式.

  注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数.

  2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式;

  次数: 多项式里,次数最高项的次数,是多项式的次数;

  注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式.

  3) 整式:单项式和多项式统称为整式.

  4)同类项:① 概念:所含字母相同,并且相同字母的.指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项.

  ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

  4.整式的加减:

  1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项

  2)法则:几个整式相加减,用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.

  3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果.

  5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.

  初一数学知识点13

  1定义

  在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

  2举例

  例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对 称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。圆有无数条对称轴,都是经过圆心的直线。

  要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

  3性质

  1.对称轴是一条直线。

  2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

  3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

  4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

  5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

  6.图形对称。

  定理

  定理1:关于某条直线对称的两个图形是全等形。

  定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的'垂直平分线。

  定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

  定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  生活作用

  1、为了美观,比如天安门,对称就显的美观漂亮;

  2、保持平衡,比如飞机的两翼;

  3、特殊工作的需要,比如五角星,剪纸

  初一数学知识点14

  一、知识梳理

  知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

  知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

  注:有限小数和无限循环小数都可看作分数。

  知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

  知识点4:绝对值的概念:

  (1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

  (2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  注:任何一个数的绝对值均大于或等于0(即非负数).

  知识点5:相反数的`概念:

  (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

  (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

  知识点6:有理数大小的比较:

  有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

  数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

  用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

  知识点7:有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  知识点8:有理数加法运算律:

  加法交换律:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

  知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

  初一数学知识点15

  初一数学下册期末考试知识点总结一(苏教版)

  第七章 平面图形的认识(二) 1

  第八章 幂的运算 2

  第九章 整式的乘法与因式分解 3

  第十章 二元一次方程组 4

  第十一章 一元一次不等式 4

  第十二章 证明 9

  第七章 平面图形的认识(二)

  一、知识点:

  1、“三线八角”

  ① 如何由线找角:一看线,二看型。

  同位角是“F”型;

  内错角是“Z”型;

  同旁内角是“U”型。

  ② 如何由角找线:组成角的三条线中的公共直线就是截线。

  2、平行公理:

  如果两条直线都和第三条直线平行,那么这两条直线也平行。

  简述:平行于同一条直线的两条直线平行。

  补充定理:

  如果两条直线都和第三条直线垂直,那么这两条直线也平行。

  简述:垂直于同一条直线的两条直线平行。

  3、平行线的'判定和性质:

  判定定理 性质定理

  条件 结论 条件 结论

  同位角相等 两直线平行 两直线平行 同位角相等

  内错角相等 两直线平行 两直线平行 内错角相等

  同旁内角互补 两直线平行 两直线平行 同旁内角互补

  4、图形平移的性质:

  图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

  5、三角形三边之间的关系:

  三角形的任意两边之和大于第三边;

  三角形的任意两边之差小于第三边。

  若三角形的三边分别为a、b、c,

  则

  6、三角形中的主要线段:

  三角形的高、角平分线、中线。

  注意:①三角形的高、角平分线、中线都是线段。

  ②高、角平分线、中线的应用。

  7、三角形的内角和:

  三角形的3个内角的和等于180°;

  直角三角形的两个锐角互余;

  三角形的一个外角等于与它不相邻的两个内角的和;

  三角形的一个外角大于与它不相邻的任意一个内角。

  8、多边形的内角和:

  n边形的内角和等于(n-2)180°;

  任意多边形的外角和等于360°。

  第八章 幂的运算

  幂(p5

  初一数学知识点16

  1.等式与等量:用=号连接而成的式子叫等式.注意:等量就能代入!

  2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

  3.方程:含未知数的等式,叫方程.

  4.方程的`解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!

  5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).

  8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a0).

  9.一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).

  初一数学知识点17

  一、目标与要求

  1.解有序数对的应用意义,了解平面上确定点的常用方法。

  2.培养学生用数学的意识,激发学生的'学习兴趣。

  3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

  4.发展学生的形象思维能力,和数形结合的意识。

  5.坐标表示平移体现了平面直角坐标系在数学中的应用。

  二、重点

  掌握坐标变化与图形平移的关系;

  有序数对及平面内确定点的方法。

  三、难点

  利用坐标变化与图形平移的关系解决实际问题;

  利用有序数对表示平面内的点。

  初一数学知识点18

  一、整式

  1、单项式:表示数与字母的积的代数式。另外规定单独的一个数或字母也是单项式。

  单项式中的数字因数叫做单项式的系数。注意系数包括前面的符号,系数是1时通常省略, 是系数, 的系数是

  单项式的次数是指所有字母的指数的和。

  2、多项式:几个单项式的和叫做多项式。 (几次几项式)

  每一个单项式叫做多项式的项,注意项包括前面的符号。

  多项式的次数:多项式中次数最高的项的.次数。项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

  3、整式;单项式与多项式统称为整式。(最明显的特征:分母中不含字母)

  二、整式的加减:①先去括号; (注意括号前有数字因数)

  ②再合并同类项。 (系数相加,字母与字母指数不变)

  三、幂的运算性质

  1、同底数幂相乘:底数不变,指数相加。

  2、幂的乘方:底数不变,指数相乘。

  3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

  4、零指数幂:任何一个不等于0的数的0次幂等于1。 ( ) 注意00没有意义。

  5、负整数指数幂: ( 正整数, )

  6、同底数幂相除:底数不变,指数相减。 ( )

  注意:以上公式的正反两方面的应用。

  四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

  五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

  六、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。

  七、平方差公式

  两数的和乘以这两数的差,等于这两数的平方差。

  即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。

  八、完全平方公式

  两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。

  常见错误:

  九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。

  十、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。

  初一数学知识点19

  一、目标与要求

  1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。

  2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

  3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。

  二、重点

  学会画频数分布直方图;

  分层抽样的`方法和样本的分析、归纳;

  抽样调查、样本、总体等概念以及用样本估计总体的思想;

  全面调查的过程(数据的收集、整理、描述)。

  三、难点

  绘制扇形统计图;

  样本的抽取;

  分层抽样方案的制定;

  确定组距和组数。

  初一数学知识点20

  1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

  2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

  3、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.

  (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

  (2)若7个餐厅同时开放,能否供全校的`5300名学生就餐?请说明理由.

  4、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

【初一数学知识点】相关文章:

初一数学知识点07-26

初一数学书知识点04-28

初一数学必考的知识点11-16

初一数学数轴知识点01-26

初一数学重要知识点03-11

初一的数学知识点总结11-27

初一数学知识点04-18

初一数学知识点归纳03-16

初一数学单元知识点总结04-25

初一数学苏教版知识点总结04-25