初一数学——有理数知识点

时间:2023-06-11 10:03:09 初一 我要投稿

初一数学——有理数知识点(15篇)

  在平凡的学习生活中,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。相信很多人都在为知识点发愁,以下是小编为大家整理的初一数学——有理数知识点,仅供参考,希望能够帮助到大家。

初一数学——有理数知识点(15篇)

初一数学——有理数知识点1

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  (3);;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理数比大小:

  (1)正数的`绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:

  减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  10有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  12.有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

  (4)据规律底数的小数点移动一位,平方数的小数点移动二位.

  15.科学记数法:

  把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:

  一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  17.有效数字:

  从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:

  先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

  19.特殊值法:

  是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

初一数学——有理数知识点2

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  2.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  4.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的.个数决定.

  5.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  7.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

初一数学——有理数知识点3

  1.1正数和负数

  以前学过的0以外的数前面加上负号-的书叫做负数。

  以前学过的0以外的数叫做正数。

  数0既不是正数也不是负数,0是正数与负数的分界。

  在同一个问题中,分别用正数和负数表示的量具有相反的意义

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上-号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b=b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c=a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的`相反数。

  a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  两个数相乘,交换因数的位置,积相等。

  ab=ba

  三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

  (ab)c=a(bc)

  一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  a(b+c)=ab+ac

  数字与字母相乘的书写规范:

  ⑴数字与字母相乘,乘号要省略,或用

  ⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

  ⑶带分数与字母相乘,带分数应当化成假分数。

  用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

  一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

  ax+bx=(a+b)x

  上式中x是字母因数,a与b分别是ax与bx这两项的系数。

  去括号法则:

  括号前是+,把括号和括号前的+去掉,括号里各项都不改变符号。

  括号前是-,把括号和括号前的-去掉,括号里各项都改变符号。

  括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

  1.4.2有理数的除法

  有理数除法法则:

  除以一个不等于0的数,等于乘这个数的倒数。

  ab=a (b0)

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  1.5有理数的乘方

  1.5.1乘方

  求n个相同因数的的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0。

  有理数混合运算的运算顺序:

  ⑴先乘方,再乘除,最后加减;

  ⑵同级运算,从左到右进行;

  ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

  1.5.2科学记数法

  把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  用科学记数法表示一个n位整数,其中10的指数是n-1。

  1.5.3近似数和有效数字

  接近实际数目,但与实际数目还有差别的数叫做近似数。

  精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

  从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。

  对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。

初一数学——有理数知识点4

  1.有理数:

  (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① ②

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的`意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

  7. 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:

  减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  10 有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  12.有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15.科学记数法:

  把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:

  一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  17.有效数字:

  从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:

  先乘方,后乘除,最后加减.

初一数学——有理数知识点5

  有理数乘法法则:

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

  以上对数学中有理数乘法法则知识点的内容讲解学习,相信同学们已经能很好的.掌握了吧,希望同学们考试成功。

  七年级上数学知识点之乘方的定义

  乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0?a=0,b=0;

  (4)据规律 底数的小数点移动一位,平方数的小数点移动二位.

  相信上面对数学中乘方的定义知识点的内容讲解学习,同学们都能很好的掌握了吧,好好学习哦!

  七年级上数学知识点之有理数加法法则

初一数学——有理数知识点6

  初一数学有理数的知识点

  负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

  初一数学上册有理数

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的.相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  (3);;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

初一数学——有理数知识点7

  数学有理数知识点:

  一、目标与要求

  1.了解正数与负数是从实际需要中产生的。

  2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

  3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

  4.了解倒数概念,会求给定有理数的倒数;

  5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法

  二、重点

  正、负数的概念;

  正确理解数轴的概念和用数轴上的点表示有理数;

  有理数的加法法则;

  除法法则和除法运算。

  三、难点

  负数的概念、正确区分两种不同意义的量;

  数轴的概念和用数轴上的点表示有理数;

  异号两数相加的法则;

  根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定

  四、知识点、概念总结

  1.正数:比0大的数叫正数。

  2.负数:比0小的数叫负数。

  3.有理数:

  (1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:

  4.数轴:数轴是规定了原点、正方向、单位长度的'一条直线。

  5.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0等价于a+b=0等价于a、b互为相反数。

  6.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  7.有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数0,小数-大数0.

  8.互为倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若a0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

  9. 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  10.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

  12.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  13. 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

  15.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。

  16.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  17.科学记数法:

  把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  20.混合运算法则:先乘方,后乘除,最后加减。

初一数学——有理数知识点8

  一、学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、教学目标

  1、知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、教学过程

  1、创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  a.2×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向运动米

  2×3=

  b.-2×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向运动米

  -2×3=

  c.2×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  2×(-3)=

  d.(-2)×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  (-2)×(-3)=

  e.被乘数是零或乘数是零,结果是人仍在原处。

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=同号得

  (-)×(+)=异号得

  (+)×(-)=异号得

  (-)×(-)=同号得

  b.积的绝对值等于。

  c.任何数与零相乘,积仍为。

  (3)师生共同用文字叙述有理数乘法法则。

  3、运用法则计算,巩固法则。

  (1)教师按课本P75例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。

  (3)学生做P76练习1(1)(3),教师评析。

  (4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。

  4、讨论对比,使学生知识系统化。

  有理数乘法有理数加法

  同号得正取相同的符号

  把绝对值相乘

  (-2)×(-3)=6把绝对值相加

  (-2)+(-3)=-5

  异号得负取绝对值大的加数的符号

  把绝对值相乘

  (-2)×3=-6(-2)+3=1

  用较大的绝对值减小的绝对值

  任何数与零得零得任何数

  5、分层作业,巩固提高。

  六、教学反思:

  本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

  【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

  探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

  为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的'乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

  学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

  本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

初一数学——有理数知识点9

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的'分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

初一数学——有理数知识点10

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的'讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一数学——有理数知识点11

  一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数

  像3,2,1。2这样大于0的数叫做正数,根据需要,也可以在正数前面加上“+”(正)号;像—3,—2,—2。5这样在正数前面加上“—”(负)号的数叫做负数;0既不是正数,也不是负数。

  有理数加法

  1、有理数的加法法则(有理数加法运算律):

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  (3)一个数同0相加,仍得这个数。

  2、方法与技巧:进行有理数的加法运算时,要先观察相加两数的.符号,再确定和的符号,最后计算和的绝对值。

  数学轴

  可以用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

  原点(origin)、正方向(positivedirection)和单位长度(unitlength)称为数轴三要素,它们缺一不可。

  【数轴与实数】

  数轴上的点与实数一一对应。

  【数轴的性质】

  数轴上从左往右的点表示的数是从小往大的顺序,那么利用数轴可以比较数的大小。在数轴上表示的两个数右边的总比左边的大;正数都大于零;负数都小于零;正数大于一切负数。另外由于数轴是一条直线,是可以向两端无限延伸的,因此没有最小的负数,也没有最大的正数。

  绝对值

  绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  绝对值的几何定义:在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

  绝对值求法:一个正数a的绝对值是它本身a;一个负数a的绝对值是它的相反数—a;零的绝对值是零。

  绝对值表示法:a的绝对值用“|a|”表示。读作“a的绝对值。

初一数学——有理数知识点12

  有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方。

  通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化。相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用。

  绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义。乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面。

  初一数学——有理数知识点5

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的.数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

初一数学——有理数知识点13

  ①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。

  ②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2

  注意:|a|+b2=0 得:a=0 且 b=0

  强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

  -13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

  ③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,

  从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、

  大括号依次进行。注意:12-4×5=12-20(不能把-变+)

  ④把一个大于10的'数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。

  ⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

初一数学——有理数知识点14

  有理数:

  (1)凡能写成形式的数,都是有理数,整数和分数统称有理数.

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的'数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

初一数学——有理数知识点15

  本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

  基础知识:

  1、正数(positionnumber):大于0的数叫做正数。

  2、负数(negationnumber):在正数前面加上负号"-"的数叫做负数。

  3、0既不是正数也不是负数。

  4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

  5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

  数轴满足以下要求:

  (1)在直线上任取一个点表示数0,这个点叫做原点(origin);

  (2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

  (3)选取适当的长度为单位长度。

  6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

  7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

  8、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数。

  加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

  加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

  表达式:(a+b)+c=a+(b+c)

  9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

  10、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0.

  乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

  乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  表达式:a(b+c)=ab+ac

  11、倒数

  1除以一个数(零除外)的`商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

  12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

  13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

  根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  14、有理数的混合运算顺序

  (1)"先乘方,再乘除,最后加减"的顺序进行;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  15、科学技术法:把一个大于10的数表示成a?10n的形式(其中a是整数数位只有一位的数(即0

  16、近似数(approximatenumber):

  17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

  拓展知识:

  1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

  (1)所有有理数组成的数集叫做有理数集;

  (2)所有的整数组成的数集叫做整数集。

  2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

  3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

  4、比较两个有理数大小的方法有:

  (1)根据有理数在数轴上对应的点的位置直接比较;

  (2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

  (3)做差法:a-b>0——a>b;

  (4)做商法:a/b>1,b>0——a>b.

【初一数学——有理数知识点】相关文章:

初一数学:有理数知识点02-27

初一数学——有理数知识点07-22

初一数学——有理数知识点07-20

初一数学有理数知识点01-09

(推荐)初一数学——有理数知识点07-23

初一数学——有理数知识点15篇11-25

初一数学——有理数知识点(汇编15篇)11-30

数学知识点有理数的知识点罗列08-29

初一有理数复习知识点11-17