初一

初一数学上册期中知识点

时间:2022-11-12 09:50:05 初一 我要投稿

初一数学上册期中知识点

  在平日的学习中,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。哪些知识点能够真正帮助到我们呢?下面是小编帮大家整理的初一数学上册期中知识点,欢迎阅读,希望大家能够喜欢。

初一数学上册期中知识点

初一数学上册期中知识点1

  二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

  4.二元一次方程组的解法:

  (1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.

  5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

  一元一次不等式(组)

  1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

  2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

  不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

  3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

  4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

  5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

初一数学上册期中知识点2

  1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

  2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

  3、某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

  (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

  (2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。

  4、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

初一数学上册期中知识点3

  整式的加减

  一、代数式

  1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

  单独的一个数或字母也是代数式。

  2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

  二、整式

  1、单项式:

  (1)由数和字母的乘积组成的代数式叫做单项式。

  (2)单项式中的数字因数叫做这个单项式的系数。

  (3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  2、多项式

  (1)几个单项式的和,叫做多项式。

  (2)每个单项式叫做多项式的项。

  (3)不含字母的项叫做常数项。

  3、升幂排列与降幂排列

  (1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

  (2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

  三、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

  (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  (3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

  (4)在掌握合并同类项时注意:

  a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

  b.不要漏掉不能合并的项。

  c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  说明:合并同类项的关键是正确判断同类项。

  3、几个整式相加减的`一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  图形的初步认识

  一、立体图形与平面图形

  1、长方体、正方体、球、圆柱、圆锥等都是立体图形。

  此外棱柱、棱锥也是常见的立体图形。

  2、长方形、正方形、三角形、圆等都是平面图形。

  3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

  二、点和线

  1、经过两点有一条直线,并且只有一条直线。

  2、两点之间线段最短。

  3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

  类似的还有线段的三等分点、四等分点等。

  4、把线段向一方无限延伸所形成的图形叫做射线。

  三、角

  1、角是由两条有公共端点的射线组成的图形。

  2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

  3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

  4、度、分、秒是常用的角的度量单位。

  把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

  四、角的比较

  从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

  五、余角和补角

  1、如果两个角的和等于90(直角),就说这两个角互为余角。

  2、如果两个角的和等于180(平角),就说这两个角互为补角。

  3、等角的补角相等。

  4、等角的余角相等。

  六、相交线

  1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

  其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  2、注意:

  ⑴垂线是一条直线。

  ⑵具有垂直关系的两条直线所成的4个角都是90。

  ⑶垂直是相交的特殊情况。

  ⑷垂直的记法:a⊥b,AB⊥CD。

  3、画已知直线的垂线有无数条。

  4、过一点有且只有一条直线与已知直线垂直。

  5、连接直线外一点与直线上各点的所有线段中,垂线段最短。

  简单说成:垂线段最短。

  6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

  两条直线相交有4对邻补角。

  8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

  两条直线相交,有2对对顶角。对顶角相等。

  七、平行线

  1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

  2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  4、判定两条直线平行的方法:

  (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

  (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

  (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

  5、平行线的性质

  (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

  (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

  (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

初一数学上册期中知识点4

  (1)多项式:几个单项式的和叫做多项式。

  1、多项式中的每一个单项式叫做多项式的项。

  2、多项式中不含字母的项叫做常数项。

  3、一个多项式有几项,就叫做几项式。

  4、多项式的每一项都包括项前面的符号。

  5、多项式中次数最高的项的次数,叫做这个多项式的次数。

  (2)多项式排列:

  ①把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列.

  ②把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列.

  (3)单项式与多项式统称整式。(分母含有字母的代数式不是整式)

初一数学上册期中知识点5

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

初一数学上册期中知识点6

  知识要点:

  1.有理数加法的意义

  (1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.

  (2)两个有理数相加有以下几种情况:

  ①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.

  (3)有理数的加法法则:

  同号两数相加,取相同的符号,并把绝对值相加.

  异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.

  一个数同0相加,仍得这个数.

  注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”.

  2.有理数加法的运算律

  (1)加法交换律:a+b=b+a;

  (2)加法结合律:(a+b)+c=a+(b+c).

  根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便.

  3.有理数减法的意义

  (1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.

  (2)有理数的减法法则:减去一个数等于加上这个数的相反数.

  4.有理数的加减混合运算

  对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。然后可以运用加法的交换律和结合律简化运算。

  三、重点难点:

  重点:①有理数的加法法则和减法法则;②有理数加法的运算律.难点:①异号两个有理数的加法法则;②将有理数的减法运算转化为加法运算的过程.(这一过程中要同时改变两个符号:一个是运算符号由“-”变为“+”;另一个是减数的性质符号,变为原来的相反数)

初一数学上册期中知识点7

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行;

  (2)平行四边形的对角相等,邻角互补;

  (3)平行四边形的对角线互相平分。

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形:

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  (4)两组对角分别相等的四边形是平行四边形:

  (5)对角线互相平分的四边形是平行四边形。

  4、对称性:平行四边形是中心对称图形。

初一数学上册期中知识点8

  有理数的乘方

  (1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数.

  负数的奇数次幂是负数,

  负数的偶数次幂是正数.

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和-1。

初一数学上册期中知识点9

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

初一数学上册期中知识点10

  直线、射线、线段

  1、基本概念

  图形 直线 射线 线段

  端点个数 无 一个 两个

  表示法 直线a

  直线AB(BA) 射线AB 线段a

  线段AB(BA)

  作法叙述 作直线AB;

  作直线a 作射线AB 作线段a;

  作线段AB;

  连接AB

  延长叙述 不能延长 反向延长射线AB 延长线段AB;

  反向延长线段BA

  2、直线的性质

  经过两点有一条直线,并且只有一条直线.

  简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法

  (1)度量法

  (2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等

  定义:把一条线段平均分成两条相等线段的点.

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.

  6、线段的性质

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段长度叫做两点的距离.

  8、点与直线的位置关系

  (1)点在直线上 (2)点在直线外.

  小编为大家提供的数学期中考必备直线知识点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。

初一数学上册期中知识点11

  (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① 整数 ②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数 0和正整数;a0 a是正数;a0 a是负数;

  a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数 0,小数-大数 0.

【初一数学上册期中知识点】相关文章:

初一上册数学期中复习知识点归纳07-02

初一数学上册期中多项式知识点07-23

初一上册数学期中重点知识点指导07-23

初一数学上册《同类项》的期中复习知识点07-10

初一数学上册期中考试知识点07-02

初一上册生物期中复习知识点06-30

初一政治上册期中知识点07-26

初一数学知识点上册07-14

初一数学上册知识点07-14

初二数学上册期中复习知识点07-21