初一

初一上册数学知识点

时间:2022-01-08 19:19:35 初一 我要投稿

初一上册数学知识点合集

  在日常过程学习中,相信大家一定都接触过知识点吧!知识点在教育实践中,是指对某一个知识的泛称。还在苦恼没有知识点总结吗?以下是小编整理的初一上册数学知识点,欢迎阅读,希望大家能够喜欢!

初一上册数学知识点合集

  初一上册数学知识点 篇1

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  快速判定方法:

  1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。

  2)等腰三角形:两腰之和大于底,就能组成三角形。

  3)等边三角形:肯定能组成。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的画法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  初一上册数学知识点 篇2

  有理数的乘方

  (1)求相同因数的积的运算叫做乘方。乘方运算的结果叫幂。

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数。

  负数的奇数次幂是负数,

  负数的偶数次幂是正数。

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和—1。

  初一上册数学知识点 篇3

  同类项的概念:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。

  判断几个单项式或项,是否是同类项的两个标准:

  ①所含字母相同。

  ②相同字母的次数也相同。

  判断同类项时与系数无关,与字母排列的顺序也无关。

  合并同类项的概念:

  把多项式中的同类项合并成一项叫做合并同类项。

  合并同类项的法则:

  同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  合并同类项步骤:

  (1)准确的找出同类项。

  (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  (3)写出合并后的结果。

  合并同类项时注意:

  (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0

  (2)不要漏掉不能合并的项。

  (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  (4)不是同类项千万不能进行合并。

  初一上册数学知识点 篇4

  三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

  初一上册数学知识点 篇5

  (一)多姿多彩的图形

  立体图形:棱柱、棱锥、圆柱、圆锥、球等。

  1、几何图形

  平面图形:三角形、四边形、圆等。

  主(正)视图—————————从正面看

  2、几何体的三视图 侧(左、右)视图—————从左(右)边看

  俯视图———————————————从上面看

  (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

  (2)能根据三视图描述基本几何体或实物原型。

  3、立体图形的平面展开图

  (1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

  (2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

  4、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  (二)直线、射线、线段

  1、基本概念

  图形 直线 射线 线段

  端点个数 无 一个 两个

  表示法 直线a

  直线AB(BA) 射线AB 线段a

  线段AB(BA)

  作法叙述 作直线AB;

  作直线a 作射线AB 作线段a;

  作线段AB;

  连接AB

  延长叙述 不能延长 反向延长射线AB 延长线段AB;

  反向延长线段BA

  2、直线的性质

  经过两点有一条直线,并且只有一条直线。

  简单地:两点确定一条直线。

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法

  (1)度量法

  (2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等

  定义:把一条线段平均分成两条相等线段的点。

  图形:

  A M B

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。

  6、线段的性质

  两点的所有连线中,线段最短。简单地:两点之间,线段最短。

  7、两点的距离

  连接两点的线段长度叫做两点的距离。

  8、点与直线的位置关系

  (1)点在直线上

  (2)点在直线外。

  (三)角

  1、角:由公共端点的两条射线所组成的图形叫做角。

  2、角的表示法(四种):

  3、角的度量单位及换算

  4、角的分类

  ∠β、锐角、直角、钝角、平角、周角

  范围0<∠β<90°、∠β=90°、90°<∠β<180°、∠β=180°、∠β=360°

  5、角的比较方法

  (1)度量法

  (2)叠合法

  6、角的和、差、倍、分及其近似值

  7、画一个角等于已知角

  (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。

  (2)借助量角器能画出给定度数的角。

  (3)用尺规作图法。

  8、角的平线线

  定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。

  图形:

  符号:

  9、互余、互补

  (1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。

  (2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。

  (3)余(补)角的性质:等角的补(余)角相等。

  10、方向角

  (1)正方向

  (2)北(南)偏东(西)方向

  (3)东(

  初一上册数学知识点 篇6

  实数:—有理数与无理数统称为实数。

  有理数:整数和分数统称为有理数。

  无理数:无理数是指无限不循环小数。

  自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

  数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

  相反数:符号不同的两个数互为相反数。

  倒数:乘积是1的两个数互为倒数。

  绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

  初一上册数学知识点 篇7

  一、代数初步知识。

  1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

  2、列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“?”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“?”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a、

  二、几个重要的代数式(m、n表示整数)。

  (1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2、

  三、有理数。

  1、有理数:

  (1)凡能写成形式的数,都是有理数、正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  2、数轴:数轴是规定了原点、正方向、单位长度的一条直线、

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数>0,小数—大数

  初一上册数学知识点 篇8

  第一章:丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  ①几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  ②点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形(按名称分)

  柱:

  ①圆柱

  ②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  锥:

  ①圆锥

  ②棱锥

  球

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:

  11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

  6、截一个正方体:

  用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  7、三视图:

  物体的三视图指主视图、俯视图、左视图。

  主视图:从正面看到的图,叫做主视图。

  左视图:从左面看到的图,叫做左视图。

  俯视图:从上面看到的图,叫做俯视图。

  第二章:有理数及其运算

  1、有理数的分类

  ①正有理数

  有理数{②零

  ③负有理数

  有理数{①整数

  ②分数

  2、相反数:

  只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

  若|a|=a,则a≥0;

  若|a|=—a,则a≤0。

  正数的绝对值是它本身;

  负数的绝对值是它的相反数;

  0的绝对值是0。

  互为相反数的两个数的绝对值相等。

  6、有理数比较大小:

  正数大于0,负数小于0,正数大于负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  7、有理数的运算:

  ①五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;

  绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  ②有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  ③运算律(5种)

  加法交换律

  加法结合律

  乘法交换律

  乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成a×

  10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

  第三章:整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:

  ①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数。

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

  2、整式:单项式和多项式统称为整式。

  ①单项式:

  都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:

  单独的一个数或一个字母也是单项式;

  单独一个非零数的次数是0;

  当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

  ②多项式:

  几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  ③同类项:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:

  ①同类项有两个条件:a、所含字母相同;b、相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:

  把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:

  (1)去括号;

  (2)合并同类项。

  第四章基本平面图形

  1、线段、射线、直线

  名称

  表示方法

  端点

  长度

  直线

  直线AB(或BA)

  直线l

  无端点

  无法度量

  射线

  射线OM

  1个

  无法度量

  线段

  线段AB(或BA)

  线段l

  2个

  可度量长度

  2、直线的性质

  ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  ②过一点的直线有无数条。

  ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  3、线段的性质

  ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  ③线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  ②角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:

  一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

  终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:

  由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。

  连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

  12、圆:

  平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

  固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

  由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

  顶点在圆心的角叫做圆心角。

  第五章一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  ①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  ②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:

  把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  6、解一元一次方程的一般步骤:

  ①去分母

  ②去括号

  ③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

  ④合并同类项

  ⑤将未知数的系数化为1

  第六章数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。

  其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  初一上册数学知识点 篇9

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  初一上册数学知识点 篇10

  一、方程的有关概念

  1、方程:含有未知数的等式就叫做方程。

  2、一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如: 1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3、方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

  注:

  ⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

  ⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。

  等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

  四、去括号法则

  1、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。

  2、括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。

  五、解方程的一般步骤

  1、去分母(方程两边同乘各分母的最小公倍数)

  2、去括号(按去括号法则和分配律)

  3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4、合并(把方程化成ax=b(a≠0)形式)

  5、系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b)。

  六、用方程思想解决实际问题的一般步骤

  1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

  2、设:设未知数(可分直接设法,间接设法)

  3、列:根据题意列方程。

  4、解:解出所列方程。

  5、检:检验所求的解是否符合题意。

  6、答:写出答案(有单位要注明答案)

  初一上册数学知识点 篇11

  整式加减由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。为了体现本章知识的特殊地位与作用,具有以下几个特点:

  1、充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。

  2、知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。

  3、让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。

  4、注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。

  知识要点。整式的有关概念

  (1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。

  (2)多项式:几个单项式的和叫做多项式。

  初一上册数学知识点 篇12

  一、线段、射线、直线

  ※1、正确理解直线、射线、线段的概念以及它们的区别:

  名称图形表示方法端点长度

  直线直线AB(或BA)

  直线l无端点无法度量

  射线射线OM1个无法度量

  线段线段AB(或BA)

  线段l2个可度量长度

  ※2、直线公理:经过两点有且只有一条直线。

  二、比较线段的长短

  ※1、线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。

  ※2、比较线段长短的两种方法:

  ①圆规截取比较法;

  ②刻度尺度量比较法。

  ※3、用刻度尺可以画出线段的中点,线段的和、差、倍、分;

  用圆规可以画出线段的和、差、倍。

  三、角的度量与表示

  ※1、角:有公共端点的两条射线组成的图形叫做角;

  这个公共端点叫做角的顶点;

  这两条射线叫做角的边。

  ※2、角的表示法:角的符号为“∠”

  初一上册数学知识点 篇13

  1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

  2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

  3、某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

  (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

  (2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。

  4、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

  初一上册数学知识点 篇14

  本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

  基础知识:

  1、正数(positionnumber):大于0的数叫做正数。

  2、负数(negationnumber):在正数前面加上负号"—"的数叫做负数。

  3、0既不是正数也不是负数。

  4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

  5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

  数轴满足以下要求:

  (1)在直线上任取一个点表示数0,这个点叫做原点(origin);

  (2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

  (3)选取适当的长度为单位长度。

  6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

  7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a—b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

  8、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  (3)一个数同0相加,仍得这个数。

  加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

  加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

  表达式:(a+b)+c=a+(b+c)

  9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a—b=a+(—b)

  10、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

  乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  表达式:a(b+c)=ab+ac

  11、倒数

  1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

  12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

  根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  14、有理数的混合运算顺序

  (1)"先乘方,再乘除,最后加减"的顺序进行;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  15、科学技术法:把一个大于10的数表示成a?10n的形式(其中a是整数数位只有一位的数(即0

  16、近似数(approximatenumber):

  17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

  拓展知识:

  1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

  (1)所有有理数组成的数集叫做有理数集;

  (2)所有的整数组成的数集叫做整数集。

  2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

  3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

  4、比较两个有理数大小的方法有:

  (1)根据有理数在数轴上对应的点的位置直接比较;

  (2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

  (3)做差法:a—b>0——a>b;

  (4)做商法:a/b>1,b>0——a>b。

  初一上册数学知识点 篇15

  直线:一条拉紧的细线向两方无限延伸就是直线。

  直线表示法

  ①两大写字母法如直线AB或直线BA(字母无顺序性)

  ②小写字母法如直线a

  直线特征:

  ①直线向两方无限延伸

  ②直线没有粗细不能度量长短。

  ③两点确定一条直线

  ④两直线相交只有一个交点。

  ⑤直线无端点但有无数个点

  点与直线的位置关系:

  ①点在直线上(也可说直线经过点)

  ②点在直线外(也可说直线不经过点)

  直线公理:过两点有一条直线,并且只有一条直线。(两点确定一条直线)

  初一上册数学知识点 篇16

  1、数轴:规定了原点、正方向和单位长度的直线叫数轴。

  2、画数轴的步骤:

  ⑴画一条直线。

  ⑵选取原点、正方向。

  ⑶规定单位长度。

  ⑷数轴上用短竖标出刻度。

  ⑸数轴下用标出数值。

  3、数轴三要素:原点、正方向和单位长度

  4、数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  5、数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。

  初一上册数学知识点 篇17

  平面图形及其位置关系

  1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。

  2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。

  3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。

  4、点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。

  一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。

  一条线段可以用一个小写字母表示或用它的.端点的两个大写字母来表示。

  5、点和直线的位置关系有两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  6、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  (4)直线上有无穷多个点。

  (5)两条不同的直线至多有一个公共点。

  7、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。

  初一上册数学知识点 篇18

  七年级上册数学知识点总结之有理数及其运算板块:

  1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。

  2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

  3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

  七年级上册数学知识点总结之整式板块:

  1、单项式:由数与字母的乘积组成的式子叫做单项式。

  2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  3、整式:单项式与多项式统称整式。

  4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

  七年级上册数学知识点总结之一元一次方程。

  1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

  其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

  大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分。

  初一上册数学知识点 篇19

  1定义

  在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

  2举例

  例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对 称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。圆有无数条对称轴,都是经过圆心的直线。

  要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

  3性质

  1.对称轴是一条直线。

  2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

  3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

  4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

  5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

  6.图形对称。

  定理

  定理1:关于某条直线对称的两个图形是全等形。

  定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

  定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

  定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  生活作用

  1、为了美观,比如天安门,对称就显的美观漂亮;

  2、保持平衡,比如飞机的两翼;

  3、特殊工作的需要,比如五角星,剪纸

  初一上册数学知识点 篇20

  本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题,体验数学发展的一个重要原因是生活实际的需要。

  一、目标与要求

  1.了解正数与负数是从实际需要中产生的。

  2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

  3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

  4.了解倒数概念,会求给定有理数的倒数;

  5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法

  二、重点

  正、负数的概念;

  正确理解数轴的概念和用数轴上的点表示有理数;

  有理数的加法法则;

  除法法则和除法运算。

  三、难点

  负数的概念、正确区分两种不同意义的量;

  数轴的概念和用数轴上的点表示有理数;

  异号两数相加的法则;

  根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

  四、知识框架

  五、知识点、概念总结

  1.正数:比0大的数叫正数。

  2.负数:比0小的数叫负数。

  3.有理数:

  (1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:

  4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  5.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0等价于a+b=0等价于a、b互为相反数。

  6.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  7.有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

  8.互为倒数:乘积为1的两个数互为倒数;

  注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

  9. 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;10.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

  12.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  13. 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;

  (2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

  15.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。

  16.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  17.科学记数法:

  把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  20.混合运算法则:先乘方,后乘除,最后加减。

  (参考教材:初中数学七年级人教版)

  练习:

  1.若密云水库的水位比标准水位高出3cm记为+3cm,某月的水位记录中显示,1日水位为-5cm,2日水位为-1cm,3日水位为+4cm,则( )

  A.1日与2日水位相差6cm B.1日与3日水位相差1cm C.2日与3日水位相差5cm D.均不正确

  2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:

  最接近标准质量的是_________号篮球;质量最大的篮球比质量最小的篮球重____________克.

  3.判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1。

  (3)一个数与0相加,仍得这个数。

【初一上册数学知识点合集】相关文章:

初一上册数学《数轴》知识点10-03

初一上册数学知识点最新09-10

初一上册数学知识点大全01-07

初一数学上册知识点最新整理12-07

初一数学上册知识点科教版08-25

数学上册知识点08-02

初一上册数学知识点15篇09-09

人教版初一数学上册知识点归纳总结11-24

初一上册数学图形认识初步知识点10-04