不等式与不等式组初一数学下册知识点
新学期开始了,家长要帮助孩子调整生物钟,让孩子每天参照上学时的时间表按时作息、饮食,保证孩子开学后有旺盛的精力投入到新学期的学习中。数学网初中频道为大家提供了初一数学下册知识点,希望大家认真阅读。
一、目标与要求
1。感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2。经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3。通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
三、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
四、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的.思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
五、知识点、概念总结
1。不等式:用符号,,,表示大小关系的式子叫做不等式。
2。不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。
3。不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4。不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5。不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x—12的解集是x3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6。解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。
7。不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,y那么x(传递性)
(3)如果xy,而z为任意实数或整式,那么x+z(加法则)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么xzy如果xy,z0,那么xz
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次幂y的n次幂(n为正数)
8。一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9。解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10。 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11。一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成
了一个一元一次不等式组。
12。解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
13。解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X—1,X2 ,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X—4,X—6,不等式组的解集是X—6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14。解不等式组的口诀
(1)同大取大
例如,x2,x3 ,不等式组的解集是X3
(2)同小取小
例如,x2,x3 ,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15。应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16。用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
【不等式与不等式组初一数学下册知识点】相关文章:
初一数学下册不等式与不等式组知识点01-19
初一数学不等式与不等式组知识点02-16
初一数学《不等式与不等式组》知识点07-28
初一下册数学不等式与不等式组知识点归纳02-16
初一下册数学知识点:不等式与不等式组02-01
人教版数学不等式与不等式组知识点10-11
初一数学有关不等式与不等式组的知识点总结05-14
初中数学中考不等式与不等式组的知识点01-26