初一

初一数学《有理数》知识点总结

时间:2021-11-29 11:34:18 初一 我要投稿

初一数学《有理数》知识点总结

  在学习中,相信大家一定都接触过知识点吧!知识点是指某个模块知识的重点、核心内容、关键部分。哪些知识点能够真正帮助到我们呢?以下是小编帮大家整理的初一数学《有理数》知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学《有理数》知识点总结

  初一数学《有理数》知识点总结1

  一、正数与负数

  在实际中表示意义相反的量上升5米记为5米;-8米则表示下降8米。

  2.正数:大于0的数。

  3.负数:在正数的前面加上“-”。

  4.0的含义:

  ①既不是正数也不是负数;

  ②0在计数时表示没有,比如0元;

  ③0表示某种量的基准,比如0℃表示温度的基准

  5.有理数的分类

  ②分数概念

  (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;

  (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001...

  ③、“非”的概念

  非负数:正数和0非正分数:负分数

  非正数:负数和0非负分数:正分数

  非负整数:正整数和0

  非正整数:负整数和0

  二、数轴

  1.三要素:原点、正方向、单位长度。通常原点用“O”表示,向右的方向为正方向,单位长度为1.

  2.如何画数轴

  ①画直线(一般画成水平的),定原点,标出原点“O”;

  ②取原点向右的方向为正方向,并标出箭头;

  ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

  3.数轴上的点与有理数:

  (1)数轴上的点与有理数一一对应(2)左边的数<右边的数

  三、相反数

  ①只有符号不同的两个数,叫做互为相反数。0的相反数是0。

  ②a的相反数-a

  ③a与b互为相反数:a+b=0

  ④a-b的相反数是:-a+b或b-a

  ⑤a+b的相反数是:-a-b

  ⑥求一个数的相反数方法:在这个数的前面加“-”号.

  ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

  四、绝对值

  1.几何意义:从数轴上表示a的点到原点的距离即为︱a︱

  2.①一个正数的绝对值等于它本身;当a是正数时,︱a︱=a;

  ②一个负数的绝对值等于它的相反数;当a是负数时,︱a︱=-a;

  ③0的绝对值等于0。当a=0时,︱a︱=0。

  3.互为相反数的两个数的绝对值相等。

  五、有理数的大小比较

  1.正数>0>负数;

  2.两个负数比较

  ①右边的点表示的数比左边的点表示的数大。

  ②绝对值大的反而小。

  六、有理数的运算

  1.有理数的加法:

  加法一般步骤:

  ①确定符号:同号取相同的符号。

  异号取绝对值大的加数的符号。

  ②确定绝对值:同号将绝对值相加。

  异号用较大的绝对值减去较小的绝对值。

  互为相反数的两个数相加得0。一个数与0相加,仍得这个数。

  用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。

  三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法

  交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。

  根据算式的特征,恰当地运用运算律,可以使运算简便:

  ①符号相同的数先相加--同号结合法

  ②互为相反数的先相加--相反数结合法

  ③分母相同的数先相加--同分母结合法

  ④正数与正数,小数与小数相加--同形结合法

  2.有理数的减法:

  减法法则:减去一个数,等于加上这个数的相反数。

  加减法混合运算,把减法转化为加法再计算。

  3.代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。

  在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。

  4.有理数的乘法:

  乘法步骤:1、确定符号:同号正,异号负。

  2、绝对值:求积。

  任何数与0相乘,都得0。任何数与-1相乘都得这个数的相反数。

  多个有理数相乘的运算:

  几个非0有理数相乘时,当负因数个数是偶数时,积为正;负因数个数是奇数时,积为负;

  乘法交换律,乘法结合律,乘法分配律;

  5.有理数的除法:

  除法步骤:1、确定符号:同号正,异号负。

  2、绝对值:相除。

  除以一个不等于0的数等于乘上这个数的倒数。

  0除以任何一个不等于0的数都得0。

  七、倒数

  ①乘积是1的两个数叫作互为倒数。

  ②a的倒数是a分之1(a≠0)

  ③a与b互为倒数ab=1

  ④正数的倒数还是正数,负数的倒数还是负数,0没有倒数。

  八、乘方

  ①求几个相同因数的积的.运算叫做乘方

  a·a·…·a=an

  ②底数、指数、幂

  九、科学记数法

  ①把一个绝对值大于10的数表示成a×10n(其中1≤|a|<10,n为正整数)

  ②指数n与原数的整数位数之间的关系。(n=原数的整数位数-1)

  十、混合运算顺序

  ①三级(乘方)二级(乘除)一级(加减);

  ②同一级运算应从左到右进行;

  ③有括号的先做括号内的运算;

  ④能简便运算的应尽量简便。

  十一、本身之数

  ①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)

  ③平方等于它本身的数是0,1④立方等于经本身的数是±1,0

  ⑤偶数次幂等于本身的数是0、1⑥奇数次幂等于本身的数是±1,0

  ⑦相反数是它本身的数是0

  十二、数之最

  ①最小的正整数是1②最大的负整数是-1③绝对值最小的数是0

  ④平方最小的数是0⑤最小的非负数是0⑥最大的非正数0

  ⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数

  初一数学《有理数》知识点总结2

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  初一数学《有理数》知识点总结3

  有理数:

  (1)凡能写成形式的数,都是有理数,整数和分数统称有理数.

  注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  初一数学《有理数》知识点总结4

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

【初一数学《有理数》知识点总结】相关文章:

关于初一数学有理数知识点10-20

初一上册数学有理数知识点10-16

初一数学有理数知识点有哪些10-09

初一数学有理数部分的知识点10-04

初一数学有理数比大小知识点10-13

初一数学有理数的乘方知识点01-26

初三数学有理数的运算知识点总结07-25

初一上数学知识点之有理数乘法法则01-26

中考数学知识点之有理数11-08

人教版初一上册数学有理数的乘法知识点梳理10-10