初一数学二元一次方程组知识总结

时间:2023-07-28 14:33:29 炜玲 初一 我要投稿
  • 相关推荐

初一数学二元一次方程组知识总结

  二元一次方程组的知识点是比较难记的要领,下面的小编为大家分享的是初一数学知识点总结之二元一次方程组,想要巩固的同学可以过来看看。

初一数学二元一次方程组知识总结

  初一数学二元一次方程组知识总结1

  8.1 二元一次方程组

  方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

  把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

  使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

  8.2 消元

  将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

  以上就是的小编为大家带来的初一数学知识点总结之二元一次方程组,希望同学们能够灵活的运用,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  初一数学二元一次方程组知识总结2

  二元一次方程组

  1、二元一次方程

  ①二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  2、二元一次方程组

  ①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  ②二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  ③二元一次方程组的解法

  代入(消元)法

  加减(消元)法

  ④一次函数与二元一次方程(组)的关系:

  一次函数与二元一次方程的关系:

  直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx— y+b=0的解

  一次函数与二元一次方程组的关系:

  二元一次方程组

  的解可看作两个一次函数

  和的图象的交点。

  当函数图象有交点时,说明相应的二元一次方程组有解;

  当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

  成绩不理想的原因

  1、对知识点的理解停留在一知半解的层次上;

  2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;

  3、解题时,小错误太多,始终不能完整的解决问题;

  4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;

  5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;

  6、学习缺少科学性,上课不认真记笔记,课后不能及时巩固、复习;忙于应付作业,对知识不求甚解。

  7、忽视基础,有些“自我感觉良好”的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,反而对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,没有坚实的基础和基本功,到考试时取得不了高分;

  8、忽视作业或练习,缺乏对问题的深入思考,有时练习册上的答案由于印刷错误,孩子们作业做完后核对答案时不相信自己的结论,把自己的答案一划,把错误答案抄上;书写规范性差;

  9、周练考试出错率高,一种是一时想不出怎么做,事后会做,临场状态不好;第二种是表面上会做,但由于审题不仔细,对概念理解不清,计算不准确;第三种是时间不够,解题速度慢,平时做题习惯不好,不讲速度;第四种是根本做不出来,基本功不行,更欠缺融会贯通能力。

  以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

  数学的意义与价值

  数学是研究数量、结构、变化以及空间模型等概念的一门古老而常新的学科,是由计数、计算、量度和对物体形状及运动的观察中产生的。数学的发生和发展经过了漫长的历史阶段,它具有精确性、抽象性、严格性、广泛性等特点,其中抽象是数学与生俱来的特征,导致了它的深邃和睿智。

  数学已经一百多个分支,数学的应用已深入到自然科学、技术科学和社会人文科学的各个领域,以及社会生活的各个方面。基础数学的知识与运用更是个人与团体生活中不可或缺的一部分。

  数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

【初一数学二元一次方程组知识总结】相关文章:

初一数学二元一次方程组应用题五种题型知识点01-20

解二元一次方程组教案03-31

初一下册数学二元一次方程组应用题04-19

八年级数学二元一次方程组知识点10-09

七年级下册数学有关二元一次方程组的知识点05-22

七年级数学下册二元一次方程组的应用知识点04-19

二元一次方程组练习题11-24

《二元一次方程组》教学反思(精选20篇)04-23

二元一次方程组教学设计(精选5篇)05-07

八年级下数学二元一次方程组知识点梳理及例题解析01-19