- 相关推荐
九年级数学期末考试题北师大版
愿好运一直陪伴着你!放下包袱开动脑筋,勤于思考好好复习,祝你九年级数学期末考试取得好成绩!以下是小编为你整理的九年级数学期末考试题北师大版,希望对大家有帮助!
北师大版九年级数学期末考试题
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数y=kx的图象生经过点(1,-2),则k的值为
A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为
A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线y=-3x2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是
9.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是
A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为
A.43
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的`横线上.)
13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.
16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________
17.如图,已知点A、C在反比例函数y=ax(a>0)的图象上,点B、D在反比例函数y=bx(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)
(1)计算sin245°+cos30°•tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.
求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.
(1)求点A、点C的坐标,
(2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,
求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.
求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
九年级数学期末考试题北师大版答案
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C B A C D C A A D B B D
二、填空题:
13. y=2x
14. 35
15. 60
16.4
17. 6
18. 或
三、解答题:
19.(1) 解:
= 1分
= 2分
=2 3分
(2)解:∵∠B=90°-∠A=90°-60°=30° 1分
tanB= 2分
∴AC=3•tanB=3tan30°=3× = . 3分
20. 解:连接OB, 1分
∵⊙O的直径CD=10,
∴OC=5, 2分
又∵OM︰OC=3︰5,
∴OM=3, 3分
∵AB⊥CD,且CD为⊙O的直径,
∴△BOM是直角三角形,且AB=2BM; 4分
在Rt△BOM中,OB=5,OM=3,
∴BM= , 5分
∴AB=2BM=8 6分
21. 解:设直线AB的解析式为
由图象可知,直线AB过点(-1,2)和(-2,0) 1分
∴ 2分
(1)-(2)得k=2,
把k=2代入(1)得2=-2+b,∴b=4 3分
∴
∴直线AB的解析式为y=2x+4 4分
当x=3时,y=2×3+4=10 5分
∴该点坐标为(3,10) 6分
22.(1)证明:∵AB、CD为⊙O直径
∴ ∠ADB=∠CBD=90°, 1分
又∵∠A=∠C,AB=CD,
∴△ABD≌△CDB(AAS). 3分
(2)∵BE与⊙O相切于B,
∴AB⊥BE, 4分
又∵∠ADB为直角,
∴∠A和∠DBE都是∠ABD的余角, 5分
∴∠A=∠DBE=37°, 6分
∵OA=OD,
∴∠ADC=∠A=37°. 7分
23.解:设销售单价为x元,一个月内获得的利润为w元,根据题意,得 1分
w=(x-40)(240- ×20) 4分
=(x-40)(-4x+480)
=-4x2+640x-19200
=- 4(x-80)2+6400 5分
所以抛物线顶点坐标为(80,6400)
抛物线的对称轴为直线x=80,
∵a=-10<0,
∴当x=80时,w的`最大值为6400. 6分
∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元
7分
24.解:如图,过点D作DM⊥EC于点M,DN⊥BC于点N, 设BC=h. 2分
在Rt△DMA中,∵AD=6,∠DAE=30°,
∴DM=3,AM= , 3分
则CN=3,BN=h-3; 4分
在Rt△BDN中,
∵∠BDN=30°,
∴DN= ; 5分
在Rt△ABC中,
∵∠BAC=48°,∴AC= . 6分
∵AM+AC=DN, 7分
∴ + = ,解之得h≈13.
故大树的高度为13米. 8分
25.解:(1)∵在Rt△BOA中,点E(4,n)在直角边AB上,
∴OA=4, 1分
∴AB=OA×tan∠BOA=2. 2分
(2)∵点D为OB的中点,点B(4,2),
∴点D(2,1),
又∵点D在 的图象上,
∴k=2,
∴ , 3分
又∵点E在 图象上,
∴4n=2,
∴n= . 4分
(3)设点F(a,2),
∴2a=2,
∴CF=a=1 , 5分
连结FG,设OG=t,
则OG=FG=t ,CG=2-t, 6分
在Rt△CGF中,GF2=CF2+CG2 , 7分
∴t2=(2-t)2+12 ,
解得t = ,
∴OG=t= . 8分
26.解:⑴∵当x=0时,y=- ,
∴C(0,- ), 1分
∵当y=0时, ,
得 , ,
∴A(-4,0), B(1,0) 2分
⑵∵A(-4,0), C(0,- ),
∴AO=4, CO= ,
在Rt△AOC中,
∵tan∠OAC= = ,
∴∠OAC=30°, 3分
作OD⊥AC于D,
∴OD= AO sin∠OAC=2. 4分
⑶∵A(-4,0), C(0,- ),
∴可解得直线AC的解析式为 , 5分
当⊙P与直线AC相切时,点P到直线AC的距离为2,
若点P在直线AC的上方,
由(2)可知,点P在过点O且平行于直线AC的直线上,
此时,直线OP的表达式为: , 6分
∴ ,
解得 或 , 7分
若点P在直线AC的下方,
可得点P在直线 上, 8分
∴ ,
∴解得 ,
∴点P的横坐标为 或 或-2. 9分
27.解: (1) 取AB的中点O,连结OD,OC, 1分
∵Rt△ABD和Rt△ABC的斜边为AB,
∴OD= ,OC= , 2分
∴OA=OB=OC=OD,
∴A、B、C、D四个点在同一个圆上. 3分
(2)如图,连结DF, 4分
∵点D、P关于AB对称,
∴∠1=∠2, 5分
∵AD⊥BC于点D,CF⊥AB于点F,
∴∠2+∠3=90°,∠4+∠BCE=90°,BE⊥AC,点A、C、D、F四点共圆,
∴点B、F、E、C四点共圆,∠3=∠4, 6分
∴∠2=∠BCE,∠BFE+∠BCE=180°,
∴∠2+∠BFE=180° , 7分
∴∠1+∠BFE=180°,
∴点P、F、E三点在一条直线上. 8分
(3) . 9分
【九年级数学期末考试题】相关文章:
数学小考复习考试题06-13
小学语文期末考试题及答案04-02
电工期末考试题及答案06-09
初中历史期末考试题及答案03-02
小学五年级数学上册期末考试题及答案08-09
初一数学下册月考试题03-14
国际公法期末考试题(附答案)01-25
四年级下册数学期末考试题分析范文04-02
小升初分班考试数学考试题及答案06-08
高中语文期末考试题及参考答案08-11