初三数学旋转知识点归纳

时间:2024-06-18 19:22:50 志彬 初三 我要投稿
  • 相关推荐

初三数学旋转知识点归纳

  在我们的学习时代,大家都没少背知识点吧?知识点在教育实践中,是指对某一个知识的泛称。还在苦恼没有知识点总结吗?以下是小编为大家整理的初三数学旋转知识点归纳,仅供参考,欢迎大家阅读。

初三数学旋转知识点归纳

  初三数学旋转知识点归纳

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

  这两个图形中的对应点叫做关于中心的对称点.

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

  (2)关于中心对称的两个图形是全等图形.

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P(-x,-y)。

  初三数学图形的旋转知识点与圆的知识点

  1、定义

  把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  二、中心对称

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  5、坐标系中对称点的特征

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

  初三数学圆的知识点

  一 圆的定理

  1.1不共线的三点确定一个圆

  经过一点可以作无数个圆

  经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上

  定理:过不共线的三个点,可以作且只可以作一个圆

  推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心

  三角形的三条高线的交点叫三角形的垂心

  1.2垂径定理

  圆是中心对称图形;圆心是它的对称中心

  圆是周对称图形,任一条通过圆心的直线都是它的对称轴

  定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

  推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

  推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

  推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

  1.3弧、弦和弦心距

  定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

  二 圆与直线的位置关系

  2.1圆与直线的位置关系

  如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离

  如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点

  定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

  定理:圆的切线垂直经过切点的半径

  推论1:经过圆心且垂直于切线的直线必经过切点

  推论2:经过切点且垂直于切线的直线必经过圆心

  如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点

  直线和圆的位置关系只能由相离、相切和相交三种

  2.2三角形的内切圆

  如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆

  定理:三角形的三个内角平分线交于一点,这点是三角形的内心

  三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。以旁心为圆心可以作一个圆和一边及其他两边的延长线相切,所作的圆叫做三角形的旁切圆

  2.3切线长定理

  定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  2.4圆的外切四边形

  定理: 圆的外切四边形的两组对边的和相等

  定理:如果四边形两组对边的和相等,那么它必有内切圆

  三 圆与圆的位置关系

  3.1两圆的位置关系

  在平面内,不重合的两圆。它们的位置关系,有以下五种情况:外离、外切、相交、内切、外切

  经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距

  定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上

  (1)两圆外离d>R+r

  (2)两圆外切d=R+r

  (3)两圆相交R-rr)

  (4)两圆内切d=R-r(R>r)

  (5)两圆内含dr)

  特殊情况,两圆是同心圆d=0

  3.2两圆的公切线

  定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

【初三数学旋转知识点归纳】相关文章:

中考数学平移与旋转知识点归纳06-09

初三数学的知识点归纳04-20

初三数学的知识点归纳09-25

初三数学的知识点归纳优秀04-17

初三数学知识点归纳07-28

初三数学知识点归纳12-15

初三数学知识点归纳整理11-03

初三数学《随机事件》知识点归纳05-06

初三数学的知识点归纳集锦15篇11-08

初三物理知识点归纳10-17