初二

初二年级上册数学期中知识点归纳

时间:2022-11-08 10:18:48 初二 我要投稿

初二年级上册数学期中知识点归纳

  在学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是学习的重点。相信很多人都在为知识点发愁,以下是小编帮大家整理的初二年级上册数学期中知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。

初二年级上册数学期中知识点归纳

  初二年级上册数学期中知识点归纳

  平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。

  点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。

  在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。

  如何根据已知条件建立适当的直角坐标系?

  根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:

  ①以某已知点为原点,使它坐标为(0,0);

  ②以图形中某线段所在直线为x轴(或y轴);

  ③以已知线段中点为原点;

  ④以两直线交点为原点;

  ⑤利用图形的轴对称性以对称轴为y轴等。

  图形“纵横向伸缩”的变化规律:

  A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:

  ①当n>1时,伸长为原来的n倍;

  ②当0

  B、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:

  ①当n>1时,伸长为原来的n倍;

  ②当0

  图形“纵横向位置”的变化规律:

  A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a>0)或向左(a<0)平移了|a|个单位。

  B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b>0)或向下(b<0)平移了|b|个单位。

  图形“倒转与对称”的变化规律:

  A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。

  B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。

  图形“扩大与缩小”的变化规律:

  将图形上各个点的纵、横坐标分别变原来的n倍(n>0),所得的图形与原图形相比,形状不变;

  ①当n>1时,对应线段大小扩大到原来的n倍;

  ②当0

  三角形的有关概念

  1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

  三角形的特征:

  ①不在同一直线上;

  ②三条线段;

  ③首尾顺次相接;

  ④三角形具有稳定性。

  2.三角形中的三条重要线段:角平分线、中线、高

  (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  (2)中线:在三角形中,连接一个顶点和它的对边中点的`线段叫做三角形的中线。

  (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  说明:

  ①三角形的角平分线、中线、高都是线段;

  ②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

  三角形的边和角

  三边关系:三角形中任意两边之和大于第三边。

  由三边关系可以推出:三角形任意两边之差小于第三边。

  三角形内、外角的关系

  1.三角形的内角和等于180°。

  2.直角三角形的两个锐角互余。

  3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

  4.三角形的外角和为360°。

  等腰三角形与直角三角形:

  1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

  说明:等边三角形是等腰三角形的特殊情况。

  2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

  平方根、算数平方根和立方根

  1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  表示方法:读作根号a。

  性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

  2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  表示方法:正数a的平方根,读作“正、负根号a”。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方:求一个数a的平方根的运算,叫做开平方。

【初二年级上册数学期中知识点归纳】相关文章:

初二数学上册期中复习知识点归纳01-19

初二数学上册知识点归纳07-26

初二数学上册的知识点归纳07-12

初二数学上册知识点总结归纳12-14

初二上册地理期中知识点归纳07-01

初二上册数学实数知识点归纳07-12

初二英语上册知识点归纳08-04

初二语文上册知识点归纳01-25

初二上册数学关于平均数的期中复习知识点归纳07-06