关于初二数学无理数知识点总结
初二数学无理数知识点总结
知识要领:无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
无理数概念
无理数是无限不循环小数。如圆周率、√2(根号2)等。
有理数是由所有分数,整数组成,它们都可以化成有限小数,或无限循环小数。如22/7等。
实数(real number)分为有理数和无理数(irrational number)。
有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数); 也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。
除了无限不循环小数以外的实数统称有理数。
无理数与有理数的区别区别1
把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……。而无理数只能写成无限不循环小数,比如√2=1.414213562…………。根据这一点,人们把无理数定义为无限不循环小数。
区别2
无理数不能写成两整数之比。
利用有理数和无理数的主要区别,可以证明√2是无理数。
证明:假设√2。”他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满;还证明了世界上只有五种正多面体,即:正4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。
毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希帕索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
知识点总结: 常见的无理数有大部分的平方根、π和e等。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的.数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
【初二数学无理数知识点总结】相关文章:
初二上册数学无理数知识点总结06-27
初二上册数学无理数知识点归纳总结09-08
初二数学的知识点总结02-05
初二数学实数知识点总结11-25
初二数学实数的知识点总结02-04
初二数学知识点总结06-23
初二数学下的知识点总结02-04
初二数学矩形的知识点总结06-23
初二数学实数知识点的总结11-25